
LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

JUN 6 1969

STATE OF CALIFORNIA The Resources Agency 200 90

Department of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965 Volume III: CENTRAL COASTAL AREA

JULY 1967

RONALD REAGAN Governor State of California

WILLIAM R. GIANELLI Director Department of Water Resources

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

. 0

STATE OF CALIFORNIA The Resources Agency

Department of Water Resources

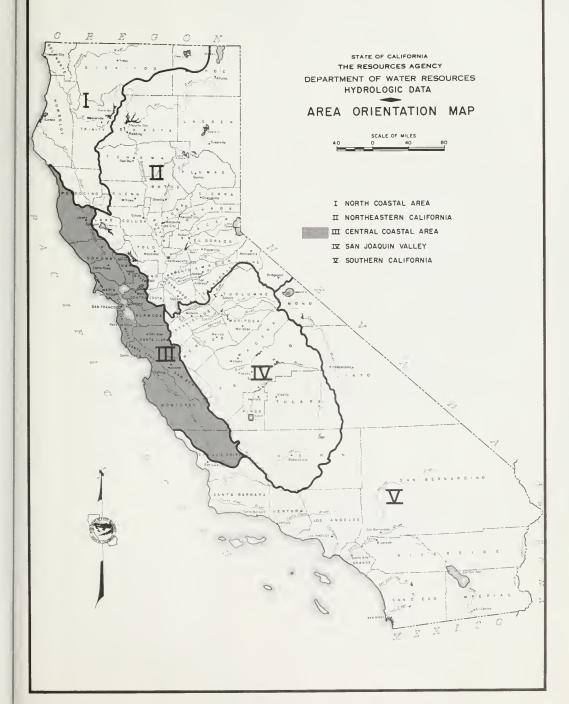
BULLETIN No. 130-65

HYDROLOGIC DATA: 1965 Volume III: CENTRAL COASTAL AREA

JULY 1967

RONALD REAGAN Governor State of California WILLIAM R. GIANELLI Director Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES


Volume	Ι	-	NORTH COASTAL AREA
Volume	II	-	NORTHEASTERN CALIFORNIA
Volume	III	-	CENTRAL COASTAL AREA
Volume	IV	-	SAN JOAQUIN VALLEY
Volume	V	-	SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix	А	-	CLIMATE
Appendix	В	-	SURFACE WATER FLOW
Appendix	С	-	GROUND WATER MEASUREMENTS
Appendix	D	-	SURFACE WATER QUALITY
Appendix	E	_	GROUND WATER OUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALE	NT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1,609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U.S. gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U.S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

FOREWORD

The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas and the organization of this bulletin are outlined on pages ii and iii.

The basic data programs of the Department of Water Resources have been coordinated with the activities of other interested agencies to satisfy specific needs of agencies within the State. The specific objectives and authorizations for the basic data programs are enumerated in Table 1 of the text.

Bulletin No. 130-65 presents useful, comprehensive, accurate, and timely hydrologic data which are prerequisites for effective planning, design, construction, and operation of water facilities.

WyGenelle

William R. Gianelli, Director Department of Water Resources The Resources Agency State of California May 10, 1967

TABLE OF CONTENTS

•	Page
ORGANIZATION OF BULLETIN NO. 130 SERIES	ii
AREA ORGANIZATION MAP	iii
METRIC CONVERSION TABLE	iv
FOREWORD	v
ORGANIZATION	x
ACKNOWLEDGMENTS	xi
ABSTRACT	xii
CHAPTER I. INTRODUCTION	1
CHAPTER II. SUMMARY OF DATA ACTIVITIES	2
Climate	2 2 4 6
APPENDIXES	
Appendix A: CLIMATE	7
Introduction	9 9 9 9 10
Explanation of TablesClimatological Station IndexPrecipitation DataTemperature DataEvaporation Data	10 10 12 12 12
Appendix B: SURFACE WATER FLOW	47
Introduction	49 49 49 49

TABLE OF CONTENTS

Page

APPENDIXES (Continued)

Appendix B: SURFACE WATER FLOW	
Explanation of Tables. Daily Mean Discharge Imports. Daily Mean Gage Height Daily Maximum and Minimum Tides. Corrections and Revisions to Previously Published Surface Water Data	50 50 51 51 51
Appendix C: GROUND WATER MEASUREMENTS	59
Introduction	61 61 61 61 61
Explanation of Figures and Tables.	62 63 63 67
Introduction	119 119
Coding	119
Explanation of Figures and Tables. Specific Conductance Sampling Station Data and Index. Analyses of Surface Water. Summary of Coliform Analyses Analyses of Trace Elements in Surface Water.	120 121 121 121 121 122 122
Radioassays of Surface Water	122 123 123 123
Appendix E: GROUND WATER QUALITY	185
Introduction	187 187 187
Explanation of Tables	188 189 189

TABLE OF CONTENTS

FIGURES

Figure Number	Pag	<u>e</u>
	Appendix C	
C-1	San Francisco Bay Region	59 70 73
D-1	Specific Conductance - Daily Mean, Alameda Creek near Niles (Station 73)	24
D-2	Specific Conductance - Daily Readings at 1300 Hours, Bethany Forebay at South Bay Pumping Plant (Station 207)	
	Bay Pumping Plant (Station 207) 12	

TABLES

Table

Number

1	Summary of Data Activities in the	
	Central Coastal Area	3
2	Summary of Ground Water Data Collected in	
	the Central Coastal Area	5

Appendix A

A-1	Climatological Station Index	3
A-2	Precipitation Data 1	7
	Temperature Data	6
	Evaporation Data	2

Appendix B

B-1	Daily Mean Discharge	53
B-2	Surface Water Imports to the Central	
	Coastal Area.	54
B-3	Daily Mean Gage Height	55
B-4	Daily Maximum and Minimum Tides	56
B-5	Corrections and Revisions to Previously	
	Published Reports of Surface Water Data	58

Appendix C

C-1	Ground Water Level Conditions in the	
	Central Coastal Area.	77

TABLES (Continued)

Table Number

Page

Appendix C

C-2	Description of Selected Wells	
		78
	San Francisco Bay Region	79
	Central Coastal Region	34
C-3	Ground Water Levels at Wells	
	NOICH COASCAL REGION & & & & & & & & & & & & & & & & & & &	37
	Dan Flancisco Day Region	92
	Central Coastal Region 10)7

Appendix D

D-1 Sampling Station Data and Index	• *	.26
D-2 Analyses of Surface Water		
North Coastal Region (No. 1)	. 1	.29
San Francisco Bay Region (No. 2)	-	44
Central Coastal Region (No. 3)		.50
South Bay Aqueduct	1	.68
		171
D-4 Analysis of Trace Elements in Surface Water		.72
D-5 Radioassay of Surface Waters	. 1	L73
D-6 Description of Salinity Observation Station		
and Maximum Observed Salinity at Bay		
and Delta Stations	1	L75
	• *	., .
D-7 Salinity Observations at Bay and Delta		
Stations		
D-8 Nutrients in Surface Water	. 1	L79
D-9 Pesticides in Surface Waters and Sediments	. 1	183

Appendix E

E-1	Analyses of Ground Water	
	North Coastal Region (No. 1)	190
	San Francisco Bay Region (No. 2)	195
	Central Coastal Region (No. 3)	226
E-2	Radioassays of Ground Water	244

PLATES (Bound at Back of Bulletin)

Plate Number	
1	Climatological Stations in the Central Coastal Area, 1965.
2	Ground Water Basins or Units in the Central Coastal Area, 1965.
3	Surface Water Stations in the Central Coastal Area, 1965.
4	Status of Sea-Water Intrusion, Santa Clara Valley, East Bay Area, 1965.
5	Status of Sea-Water Intrusion, Salinas Valley, 1965.

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

RONALD REAGAN, Governor WILLIAM R. GIANELLI, Director, Department of Water Resources

SAN FRANCISCO BAY DISTRICT

of

Glenn R. Peterson. Chief, Water Supply Unit Assisted by

> Reviewed and coordinated by Statewide Planning Office Data Coordination Branch

> > x

ACKNOWLEDGMENTS

The Department is grateful for the data supplied and the cooperation rendered by many agencies and individuals. It is especially fitting to commend the following agencies:

Federal

United States Army Corps of Engineers

- United States Army, Post Engineer, Fort Ord
- United States Bureau of Reclamation
- United States Coast Guard
- United States Geological Survey
- United States Soil Conservation Service
- United States Weather Bureau

State

- California Department of Public Health
- California Department of Veterans Affairs
- California Division of Highways
- California Division of Forestry
- University of California, Agricultural Extension Service

Local

- Alameda County Flood Control and Water Conservation District
- Alameda County Water District
- Campbell Water Company
- East Bay Municipal Utility District

Marin County

Local

Marin Municipal Water District

Mendocino County

Monterey County Flood Control and Water Conservation District

Napa County

North Los Altos Water Company

Pacheco Pass Water District

San Benito County

- San Francisco Water Department
- San Jose Water Works
- San Luis Obispo County Flood Control and Water Conservation District
- Santa Clara County Flood Control and Water District
- Santa Clara Valley Water Conservation District
- Santa Cruz County, Department of Public Works
- Solano Irrigation District
- Solano County, Department of Public Works
- Sonoma County Flood Control and Water Conservation District
- South Santa Clara Valley Water Conservation District

ENGINEERING CERTIFICATION

This report has been prepared under my direction as the professional engineer in direct responsible charge of the work, in accordance with the provisions of the Civil and Professional Engineers' Act of the State of California.

Thema Ray Victorien

att

Registered Civil Engineer

Registration No. C10561

Date March 10, 1967

ATTEST:

C. M. Callough District Engineer

San Francisco Bay District

Registration No. C8123

Date 3/13/67

ABSTRACT

Tables show data on climate, surface water flow, ground water levels, and surface and ground water quality during the 1964-65 water year. Figures show fluctuation of water levels in wells and specific conductance in Alameda Creek near Niles and in Bethany Forebay at the South Bay Pumping Plant. Plates show locations of climatological stations, surface water measurement stations, surface water quality stations, and ground water basins or units, and the status of sea-water intrusion in the Santa Clara Valley East Bay area and in the Salinas Valley.

CHAPTER I. INTRODUCTION

The Department of Water Resources is concerned with development and use of water supplies and with methods that are employed to observe and measure hydrologic conditions. Hydrologic data are used for the planned development of new water supplies, hydropower, drainage, flood control, navigation, and other associated engineering projects.

This report contains a record of hydrologic data collected and assembled by the San Francisco Bay District of the Department of Water Resources. It brings together in a permanent and usable form data on Surface Water Quality and Measurements from October 1, 1964, to September 30, 1965, and data on Climate, Ground Water Measurements, and Ground Water Quality from July 1, 1964, to September 30, 1965.

Other reports of basic water resources data include:

Surface Water Records of California, Vol. 1
(U. S. Geological Survey)

Climatological Data (U. S. Weather Bureau) Hourly Precipitation (U. S. Weather Bureau)

Users of hydrologic data should be aware of the limitations inherent in the data. Most standard texts on hydrology contain a description of the instrumentation and methods used in collecting the data together with methods of using and interpreting the data. The report of the Hydrology Subcommittee of the Pacific Southwest Inter-Agency Committee entitled "Limitations in Hydrologic Data as Applied to Studies of Water Control and Water Management", dated February 1966, gives a detailed presentation of the subject and includes references to other publications.

-1-

CHAPTER II. SUMMARY OF DATA ACTIVITIES

A summary of the basic data activities in the Central Coastal Area is presented on Table 1. The summary indicates for each activity the origin, purpose, authorization, type of data collected, frequency of measurements or service, agency collecting the data, and number of stations of each type.

Climate

The objective of the climate activity is to assure sufficient historical records of climatological data to plan water development projects to meet the social, economic, and physical needs of the people of California. This objective is achieved by providing cooperative assistance to the U. S. Weather Bureau in the maintenance of its climatological station network. Information collected includes data on precipitation, temperature, evaporation, and wind. These data are supplemented with data gathered by the Department where necessary for the Department's needs.

The optimum operation of reservoirs requires data of precipitation, evaporation, and wind movement. Reservoir spillway design requires data on duration, frequency, and intensity of rainfall over the entire drainage area. Precipitation data from a few stations are needed for early forecasting of possible flooding and water supply conditions.

Climatological data summaries are published in Appendix A.

Surface Water Flow

The objective of the surface water flow activity is to provide a historical record of the flows and stages of surface water throughout the State. This activity augments that of the U. S. Geological Survey and other agencies to provide a statewide base network of primary and secondary stream gaging stations that will satisfy the full needs of the Department and State

-2-

TABLE I

SUMMARY OF DATA ACTIVITIES IN THE CENTRAL COASTAL AREA

Activity	: Origin	: : : Purpose : Au	thorizetica :	Type Collected	Dete : Collected By :	Prequency Measured :	Number of
		::	i		: :	or Serviced :	Stations
limate	1956	To supplement records compiled by the Weather Bureau and	Secs. 228, of Water Code	Precipitation	Cooperatore USWB USWB	Daily Daily Hourly	77 95 58
		to index and file all available dats for ready use.		Tempersture	Cooperators USWB	Daily Daily	51 62
				Eveporation and Wind	Cooperators USWB	Deily Deily	12 6
urface Water low	1924	To provide en inventory	Secs. 225, 226 of	1. Streamflow	DWR	1. Measured monthly	1
104		of data on surface water which will be evailable now and in the future for: (1)	Water Code		USGS (FedState) USGS (Other)		60 60
				2. Tidal Stege	DWR	2. Visited monthly	2
		flow; (2) plenning water development projects; (3) apera- tion of flood control and multiple purpose		3. Stage	DWR	3. Visited semi- ennually	1
		and multiple purpose projects; (4) atudying tidal action; and (5) formulation of agree- ment on water rights without expensive litigation.					
round Water eesurement	1917	To compile represents- tive ground water data so that: (1) information will be available for	Sece. 225, 226, 228, of Water Code	Depth to Ground Water	DWR, USGS and Cooperators	Key wells measured once a month	391 month wells, of which DWF measured
		future conjunctive operation; (2) appraisel can be made of drainage and overdraft problems; (3) local interest and cooperation will be stimulated; and (4) percellal ground water basins can be facilitated				Grid wells measured annually or semi- annually	1589 grid wells, of which JWR measured 4
urface Water uality Date	1951	Objectives of this program are: (1) to determine the quality of the State's sur- face waters; (2) to	Sec. 229 of Water Code	Mintral (com- plete mineral semianually, partial migeral	DWR	Monthly	24
		face waters; (2) to detect changes in quality and alert control egencies when		ermsining months) Spectrographic	DWR	Semiscruslly	7
		control egencies when adverse changes occur; (3) to determine trends;		(trace elements)			
		(3) to determine trends;(4) to record and		Radiological	DWR	Annually	23
		(4) to record and catalogue the data in a readily available form; and (5) to disseminate the data and informs-		Bacteriological Specific con-	DWR DWR	Monthly Twice each month	22
		and ()) to disseministe the data and ioforma- tion gathered.		ductacce (contin- uous recorder)	DHK	TATCE EACH MODELL	×
round Water	1953	To compile representa-	Sec. 229 of Water	Standard and partial mineral	DWR end Cooperators	Annuelly	371
uelity		tive ground water quality data to: (1) establish the quality	Coda	bession minister	cooperatore	Semiannually	159
		of existing ground		Neavy metal	DWR	Quarterly	2
		water bodies in the State; (2) provide for organization and ready discemination of ground water quality data		Radiologicel	DWR	Querterly	2

in connection with water-associated engineering activities. Knowledge of the occurrence of surface water, quantitatively with time and location, is basic to development of the water resources of the State. Continuous historic records of natural streamflow are essential to select and operate water development projects, to determine the maximum amount of water that can be anticipated on a firm basis at a storage site, and to determine the size of a reservoir required to obtain certain firm yields at that site. Long-time records of streamflow are also essential to formulate and operate flood control projects. These records can provide the basis for development of agreements on water rights without expensive litigation.

The surface water activities in the Central Coastal Area involve the operation and maintenance of stream gaging and tidal stage stations, and the collection and compilation of surface water imports and stage records.

Surface water flow data gathered by the Department and similar data collected from other agencies are included in Appendix B of this report.

Ground Water Measurement

The objectives of the ground water measurement activity are to provide sufficient records of ground water level data for the planning and development of the ground water resources of the State; to determine the amount of water in storage and the change in storage over time; and to determine the direction and magnitude of the movement of ground water. All studies of ground water problems and plans for solution of these problems must be founded upon records of water level measurements and upon quality analyses of water samples obtained over a period of years.

Table 2 gives an areal summary of the ground water data collected in the Central Coastal Area. Ground water level data from selected wells are included in Appendix C.

-4-

TABLE 2 SUMMARY OF GROUND WATER DATA COLLECTED IN THE CENTRAL COASTAL AREA July 1, 1964 - September 30, 1965

:he

C

2

Ground Water Basin or Unit	: Pasin : Number	: Meesuring or Sampling : Agency	: Number o	f Wells : Sampled
		NORTH COASTAL REGION (No. 1)		
Potter Valley	1-14.00	U. S. Geological Survey	2	
Jkiah Valley	1-15.00	U. S. Geological Survey Mendocino County Ferm Advisor	2	11
Samel Valley	1-16.00	U. S. Geological Survey Mendocino County Farm Advisor	3	6
Alexander Valley	1-17.00	U. S. Geological Survey Department of Water Resources	6	6
Santa Rosa Valley Santa Rosa Area	1+18.00 1-18.01	U. S. Geological Survey Department of Water Resources	3 10	17
Healdsburg Area	1-18.02	U. S. Geological Survey	9	. ,
wwer Russian River Valley	1-98.00	U. S. Geological Survey	3	
		SAN FRANCISCO BAY REGION (No. 2)		
Petalumə Vəlley	2-1.00	U. S. Geological Survey Sonoma County F. C. & W. C. D. Department of W⊲ter Resources	3	15 9
		Separiment of water Resources	,	9
Napa-Sonoma Valley	2-2.00 2-2.01	U. S. Geological Survey	4	
Napa Valley	2-2.01	Napa County	117	
Sonoma Valley	2-2.02	Department of Water Resources U. S. Geological Survey	3	22
Sonoma Valley	2-2.02	Sonoma County F. C. & W. C. D.		9
		Department of Water Resources	1	
uisun-Fairfield Valley	2-3.00	U. S. Geological Survey	2	
		Solano County Department of Water Resources	15 4	17
ittsburg Plain	2-4.00	Department of Water Resources		3
layton Valley	2-5.00	Oepartment of Water Resources		8
gnacio Valley	2-6.00	Department of Water Resources	S	7
anta Clara Valley	2-9.00			
East Bay Area	2-9.01	Alameda County Water District Alameda County F. C. & W. C. D. Department of Water Resources	367 54 3	73 24 2
South Bay Area	2-9.02	U. S. Geological Survey Santa Clara Valley W. C. D.	3 244	47
Livermore Valley	2-10.00	Alameda County F. C. & W. C. D.	159	37
lalf Moon Bay Terrace	2-22.00	Department of Water Resources	8	
an Gregorio Valley	2-24.00	Department of Water Resources	S	
Pescadero Valley	2-26.00	Department of Water Resources	7	
West Santa Cruz Terrace	3-26.00	CENTRAL COASTAL REGION (No. 3) Senta Cruz County	7	
Soquel Valley	3-1.00	Santa Cruz County Department of Water Resources	5 3	
Pajaro Valley	3-2.00	Monterey County F. C. & W. C. D. Sente Cruz County	22 57	9
		City of Watsonville Department of Water Resources	7 10	20
Circu-Hollistor Valley	3-3.00			
Gilroy-Hollister Valley South Santa Clara County	3-3.01	South Santa Clara County W. C. D. Santa Clara Valley W. C. D.	23 16	12
		Department of Water Resources City of Gilroy	17 5	12
San Benito County	3-3.02	Pacheco Pass Water District and	109	
		San Benito County Department of Water Resources	109	15
			520	79
Salinas Valley	3-4.00	Monterey County F. C. & W. C. D. San Luis Obispo County	95	31

Surface Water Quality

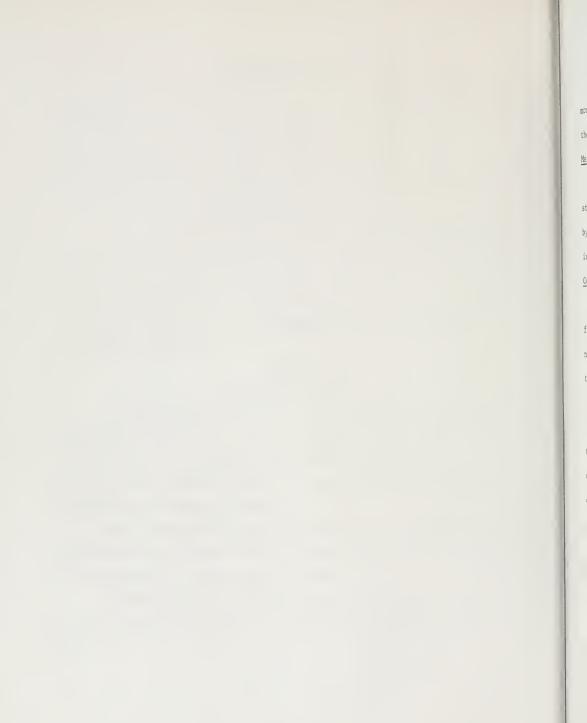
The surface water quality data activity provides basic information about chemical, physical, and sanitary quality characteristics of the State's surface waters. The information is used to assess the usability of these waters; to determine water treatment needs; to assess fish, wildlife, and recreational potentials; to identify conditions requiring remedial action or intensive investigation; and to support hydrologic studies.

Most of the data have been collected by scheduled sampling of an established network of stations covering major streams. Additional data are obtained as a result of special studies. Surface water quality data developed by this Department in the Central Coastal Area, except data from investigational stations in the San Francisco Bay System below Antioch, are presented in Appendix D.

Ground Water Quality

The ground water quality data activity provides basic information about quality characteristics of the State's ground waters. The information is used to assess the usability of ground waters, to determine treatment needs, to support hydrologic studies, and to identify conditions requiring remedial action or intensive investigation.

Most of the data have been collected by scheduled sampling of an established network of wells in the larger ground water basins. Additional data are obtained as a result of special studies.


Table 2 gives an areal summary of ground water data collected in the Central Coastal Area. Records of ground water quality are presented in Appendix E.

-6-

Appendix A

ı s

CLIMATE

INTRODUCTION

This appendix contains station index, monthly precipitation, monthly temperatures, and monthly evaporation tables. The tables cover the period from July 1, 1964, to September 30, 1965.

Methods and Procedures

Standard meteorological equipment is used at most of the stations. The stations are operated according to practices established by the U. S. Weather Bureau. Commonly accepted procedures are employed in summing up monthly totals and computing mean values.

Coding

The numbering system used by the Department was developed to facilitate station identification for data processing machines. Station numbers are composed of three components - the drainage basin designation, the alpha order number, and the subnumber.

Drainage Basin Designation

The State was divided into major hydrographic areas and each of these areas was assigned an alphabetical letter which is the first digit of the drainage basin designation. The second digit was obtained by dividing the major hydrographic areas into stream basins of primary importance and assigning a number of 0-9 with 0 generally being the valley floor.

The major hydrographic areas and the subareas which are reported in this volume are as follows:

> Hydrographic Area D Central Coastal Area

DO -	Santa Cruz Coast	D3 -	• Upper	Salinas	River
D1 -	Pajaro-San Benito Rivers	D4 -	Monter	cey Coast	-
D2 -	Lower Salinas River				

-9-

Hydrographic Area E San Francisco Bay Area

ΕO	_	San Francisco	Bay	E4 -	-	East Bay
E1	-	Coast-Marin		E5 -	-	Alameda Creek
E2	-	Marin-Sonoma		E6	-	Santa Clara Valley
E3	-	Napa-Solano		E7 -	-	Bayside-San Mateo
				E8	-	Coast-San Mateo

stati

base perio

Hydrographic Area F North Coastal Area

F8 - Mendocino Coast F9 - Russian River

Alpha Order Number and Subnumber

The four digit alpha order numbers are assigned each station to denote its order in alphabetical sequence, mainly for machine processing. As the collection of data progressed, it was found necessary to add a subnumber of two digits to the four-digit alpha number to maintain the alphabetical order of all station names.

EXPLANATION OF TABLES

Symbols and abbreviations used in this appendix are:

- B Adjusted to a full month.
- E Wholly or partially estimated.
- M All or part of record missing. When used with a value, less than ten days of records are missing.
- Record missing.
- RB Record begins.
- RE Record ends.
- T Trace, an amount too small to measure.
- V Includes total for previous month.
- * Amount included in following measurement, time distribution unknown.

Climatological Station Index

Table A-1 is an index of climatological stations. Tabulated are:

-10-

station number, name, elevation, location, (See page 62 for 40 acre tract and base & meridian description), cooperator number, cooperator's index number, period of record, and county. The cooperator numbers assigned are as follows:

to 1g,

000	Privat	e Cooperator		
403	Sonoma	County Flood Control and	Water Conservation	n District
407	San Ber	nito County		
411	Marin	County		
413	Marin 1	Municipal Water District		
414	Santa	Clara Valley Water Conserv	vation District	
418	Vallej	o Water Department		
426	Santa	Clara County Flood Control	l and Water Distric	ct
801	Pomolo	gy Department, U. C. Davis	3	
804	State 1	Department of Beaches and	Parks	
806	State 1	Department of Water Resour	ces	
808	State 1	Division of Forestry		
809	State 1	Division of Highways		
900	U. S. 1	Weather Bureau		
901	Corps	of Engineers, San Francisc	o District	
902	U. S. /	Air Force		
907	State	Climatologist (unpublished	USWB)	
909	U. S. 3	Soil Conservation Service		
The code	e for co	ounties listed in this ind	lex is as follows:	
Alameda		60	San Francisco	80
Contra (Costa	07	San Luis Obispo	40
Marin		21	San Mateo	41
Mendocir	10	23	Santa Clara	43
Monterey	7	27	Santa Cruz	44
Napa		28	Solano	48
San Beni	to	35	Sonoma	49

Precipitation Data

Table A-2 presents total monthly and seasonal precipitation in inches for the period from July 1, 1964, through September 30, 1965. Temperature Data

Table A-3 for the period July 1, 1964, through September 30, 1965, includes the maximum and minimum temperatures, the average of the daily maximum temperatures, the average of the daily minimum temperatures, and the average of the daily maximum and minimum temperatures recorded during the month. The temperatures are recorded in degrees Fahrenheit.

Evaporation Data

Table A-4 presents total evaporation during each month in inches, total wind movement during the month in miles, the monthly average of daily maximum water temperatures, and the monthly average of daily minimum water temperatures for the period July 1, 1964, through September 30, 1965.

Ŋ

1965,

g

es, ily er

NUMBER	STATION	ILEVATION (IN FEET)	SECTION		TOWNSHIP	RANGE	40-ACRE TRACT	8	LATITUDE			LONGITUDE		OOPERATOR NUMBER	COOPERATOR'S INDEX NUMBER	RECORD BEGIN	RECORD ENDED	ARS MISSING	COUNTY CODE
6 0053 4 0064 6 0125 9 0135	ALAMITOS PERC POND ALAMO IN ALMADEN RESERVOIR ALPINE DAM	185 410 640 680	SEC		1095 101 N	R07W	EN	37 37 37 37 37	15 52 10 56	00	122 121 122	1 52 02 50 38	00	414 900 414 413 900	00	1959 1957 1936 1925		YEA	43 07 43 21
2 0212 02 0322 03 0360-01 23 0372 00 0674 24 0693	ANGWIN P U C ARROYO SECO ATASCADERO MAINT STN ATLAS ROAD BEN LOMOND BERKELEY	800 940 1735	SEC SEC SEC SEC SEC	36 26 25 09	T285 T07N	R04E R12E R04W R02W		1 36 1 35 1 38 1 37	14 27 25 05	30 00 00	120 122 122	29 38 15	00	900	L145	1939 1931 1948 1940 1937 1667			26 27 40 26 44 60
6 0706 4 0790 6 0850 9 0876 9 0969	BERRYESSA 1 E BIG SUR STATE PARK BLACK MTN 2 SW BLAKES LANDING BON TEMPE DAM	240 2331 40	SEC SEC SEC SEC SEC	30 36 13	7195 7075	R10W	P N N N N	1 36 1 37 1 38	18	00	121 121 122 122 122	47 10	00	900		1921 1914 1943 1956 1958			4: 2: 4: 2: 2:
8 0973 8 0973-02 0 1005 3 1034 0 1142	BOONVILLE HMS BOONVILLE FARRER BOULDER CK LOCATELLI BRADLEY BRYSON	395 2180 540	SEC SEC SEC SEC	16 08	T13N T095 T245	R14W R14W R03W R11E R08E	P P	1 39 1 37 1 35	00 00 09 52 48	54 46 00	123 123 122 120 121	22 12 48	12 00	901 900 900	PN0971	1936 1951 1943 1946 1946			2
1 1170 7 1206 4 1216 1 1247 5 1281	BUENA VISTA BURLINGAME BURTON RANCH BU22ARD LAGOON CALAVERAS RESERVOIR	10 530	SEC	09	T045 T015	R07E R05W R02W R01E R01E	. ;	4 37 4 37 4 37	35 52 02	00	121 122 122 121 121	21 05	00	900 900 900 000 900		1932 1946 1955 1955 1874			3 4 0 4 6
6 1285 3 1312 6 1341-10 6 1377-01 4 1534	CALERO RESERVOIR CALISTOGA CAMBRJAN PARK CAMPBELL WATER CO CARMEL VALLEY	365	SEC	36 35	T09N T01S	R02E R07W R01W R02E		4 38 4 31	35 7 15 7 17	00 12 00	121	55	24	414 900 426 000 900		1958 1873 1897 1957	,	09	4 2 4 4 2
79 1602 01 1739 01 1739-01 03 1743 01 1766	CAZADERO CHITTENDEN PASS CHITTENDEN CHOLAME HATCH RANCH CIENEGA	125 104 1975	SEC SEC	12 11 12	T125 T125 T265	R12W R03E R03E R16E R06E	KI	M 35	5 54 5 54 5 41	00	123 121 121 120 121	36	00			1939 1945 1960 1925 1950)		4 3 4 4 3
9 1838 9 1840 3 1919 4 1962 0 2048	CLOVERDALE 3 SSE CLOVERDALE 11 W COLLINSVILLE CONCORD 3 E CORRALITOS	320 1820 34 200 260	SEC SEC SEC	29 17 22	T03N	RIOW R12W R01E R01W	FI	M 31	8 46 8 05 7 58	00 26 00	122 123 121 121 121	13 51	00 17	900		1950 1939 1947 1954) []		
9 2105 6 2109 0 2159 4 2177 0 2290	COYOTE DAN COYOTE RESERVOIR CREST RANCH CROCKETT DAVENPORT	800 2640 12	SEC SEC	09 32	T105	R12W R04E R03W R03W	CI	м 31	7 05 7 05 8 02	06 06	123 121 122 122 122	32 08	24 00	414		1960 1938 1948 1918 1918			4 4 0 4
2 2362 3 2399-48 3 2580 6 2919 3 2933	DEL MONTE DENVERTON 1 S DUTTONS LANDING EVERGREEN FAIRFIELD	20	SEC	20	T04N	ROIE ROIE RO2E RO2W	F	31	12 12 12 7 19	23 00 00	122	53 18 02	28 00 00	000 900 000		1911 1950 1955 1942 1940) 5		
3 2934 8 3161 8 3164 8 3191 01 3232	FAIRFIELD POLICE STA FORT BRAGG FORT BRAGG AVIATION FORT ROSS FREEDOM 8 NNW	80 61 116	SEC SEC	07 30	T18N	RO2W R17W R12W R01E	D	3' M 3	9 27	00	123 123	46 49 15	00 00	900 900 900		1951 1895 1940 1874 1953	5		
01 3238 5 3387 01 3417 01 3419 01 3422	FREMONT PEAK GERBER RCH GILROY GILROY 8NE GILROY 14 ENE	2500 2140 194 1050 1350	SEC SEC SEC	06 26	T115 T105	R04E R04E R05E R05E		31 M 3 M 3 M 3 M 3	7 22 7 00 7 02	00	121 121 121	29 34	12 00 00	900 900 900		1950 1912 1957 1942 1940	2		
02 3502 9 3577 9 3578 02 3591 53 3612-01	GONZALES 9 ENE GRATON GRATON 1 W GREENFIELD BAKER GREEN VALLEY	2350 200 210 260 414	SEC	21	T07N T07N	R06E R09W R09W R03W		M 31 M 31 M 31 M 31 M 31	8 25 8 26 6 19	54 00 24	121	51 53 14	48 00 36	000 900 901		1943 1920 1890	8	10	8
E6 3681 F9 3683 E8 3714 D3 3722 F4 3663	GUADALUPE RESERVOIR GUERNEVILLE HALF MOON BAY 2 NNW HAMES VALLEY MAYWARD 6 FSF	450 115 60 725 925	SEC SEC SEC	25 19 32	T08N T05S T23S	RO1E R10W R05W R10E R01W	1	M 3 M 3	8 30 7 29	00	121 123 122	00 27	00	9 00		1930 1939 1939 1963 1963	9		

NUMBER	STATION	ELEVATION (IN FEET)	SECTION		TOWNSHIP	RANGE	RE	BASE & MENIDIAN		- LATITUDE	11	0	- LONGITUDE	н	COOPERATOR NUMBER	COOPERATOR'S INDEX NUMBER	RECORD BEGIN	RECORD ENDED	YEARS MISSING	COUNTY CODE
F9 3878 D1 3925 D1 3928	HEALDSBURG 2 E HERLDSBURG 2 E HERNANDEZ 2 NW MERNANDEZ 7 SE HOLLISTER	102 2160	SEC SEC SEC	29		R09W R10E R12E	, ,	M M	36 36	37 25 18	00	120	50 55 42	00	900 900 900 900 900 900		1877 1943 1940 1940 1940		11	49 49 35 35 35
D1 4022-10 D1 4025 D1 4035 F9 4100 F9 4277	MOLLISTER COSTA HOLLISTER 2 HOLLISTER 10 ENE HOPLAND LARGO STA INVERNESS MERY	170 284 3000 550 150			T125	R05E	1	M M M	36 36 39	51 55 01	00	121 121 121 123 122	24 14 07	00 00	606 900 900 900 000		1962 1938 1948 1951			35 35 35 23 21
F9 4480 E2 4500 F9 4502 D2 4555 F9 4593	KELLOGG KENTFIELD KENT LAKE KING CITY KNIGHTS VALLEY	50 360			T09N T02N T20S T09N	ROAW		M M M	37	57	00	122 122 122 121 122	33	00	900 900 413 900 900		1936 1888 1954 1887 1964	7		49 21 21 27 49
E4 4633 F9 4652 E8 4660 E3 4677 D3 4767	LAFAYETTE 2 NNE LAGUNITAS LAKE LA HONDA LAKE CURRY LA PANZA RANCH	540 785 670 396 1550	SEC SEC SEC	14 19 20	T01N T07S T06N T29S	R07W R04W R02W R17E		MM	38	56 19 21	48 00 16	122	35 16 07	42 00 18	900 413 900 418 900		1954 188 1954 1924	1 D 6	09	07 21 41 28 40
E6 4916 E6 4922 D3 4963 E5 4996 E5 4997	LEROY ANDERSON DAM LEXINGTON RESERVOIR LINN RANCH LIVERMORE SEWAGE PLT LIVERMORE 2 SSW	700 870 405	SEC	05 07 12	7095 T265 T035	R03E R01W R12E R01E R02E	J F A	M M M	35 37	10 41 41	36 06	121	59 43 48	18	000		195 195 192 196 187	1 5 1		43 43 40 60
03 5017 E6 5123 E6 5123-04 00 5125 D4 5184	LOCKWOOD 2 N LOS GATOS LOS GATOS WRIGHT LOS GATOS 4 SW LUCIA WILLOW SPRINGS	428	SEC	26	T085	R08E R01W R01W R02W R05E	н	M M	37	13 07	00 00 24 00	121	59 56	00	900		194 188 194 195 194	5 7 7		27 43 43 43 27
E3 5333 E4 5371 E4 5372 E4 5377 E2 5647	MARE ISLAND NAVY MARTINEZ 3 S MARTINEZ 3 SSE MARTINEZ FIRE STN MILL VALLEY	52 225 280 26 10		31	TO2N	R03W R02W R02W R02W		м	37	58 56	00	122	08	00	900 900 900 411		186 194 195 189 194	1 6 1		48 07 07 07 21
D4 5795 E6 5844 E6 5846 D1 5853 E4 5915	MONTEREY MORGAN HILL 2 E MORGAN MILL 6 WNW MORGAN HILL SCS MOUNT DIABLO N GATE	335 225 660 350 2100	SEC	28 12	T095	R01E R03E R03E R03E		м	37 37 37	08 09 08	00	121	37 46 39	00	900 900 900		187 194 194 195	3 5		27 43 43 43 07
E5 5933 D1 5973 D1 5973-11 E2 5996 E2 6027	MOUNT HAMILTON MOUNT MADONNA MT MADONNA CO PK MT TAMALPAIS 2 SW MUIR WOODS	4206 1800 1880 1480 170	SEC SEC	35 01	T105	R03E R02E R02E		м	37 37	01 00 54	00	121	43	00 2 12	900 900 900 900 900		188 194 193 195 194	5 7 9		43 44 43 21 21
D3 6056 E3 6065 E3 6074 F9 6105 E5 6144	NACIMIENTO DAM NAPA NAPA STATE HOSPITAL NAVARRO I NW NEWARK	16 60 220	SEC SEC	03 14	T05N T05N	R10E R04W R04W R02W	н	M	36 38 39	16 17 10	00	122	17 16 34	00	900 900 900 900 900		195 194 187 195 189	5 7 8		40 28 23 60
EZ 6290 EZ 6290-02	NICASIO NILES PINNA NOVATO 8 WNW MOVATO FIRE HOUSE OAKLAND 39TH ST	75 350 18	SEC	24	T04N	RO1N RO8W	r	** *	38 38	08	00 30	122	2 43	0 0 0 3 4 2	413 900 411 907		196 194 195 196	3		21 60 21 21 60
E4 6333 E4 6335 E3 6351 E3 6356 F9 6370	OAKLAND CITY HALL OAKLAND W8 AP OAKVILLE 1 WNW OAKVILLE 45W NO. 2 OCCIDENTAL	3 160 1685	SEC SEC	21 01	T07N T06N	R04% R05% R06% R06%			37 38	48 44 27 24 25	00	122	2 12	000	900		194 193 190 196 194	9 6 3		60 60 28 28 49
D1 6610 E6 6646 D2 6650 D3 6703 D3 6706	PAICINES OMRWALL RCH PALO ALTO CITY HALL PALOMA PARKFIELD PARKFIELD 7 NNW	23	SEC SEC SEC SEC SEC	01	T065	R05E R03 R04E R14E	£		36 37 36 35 36	21	00	12 12 12	2 08		900		192 195 194 193 194	3 0 8		35 43 27 27 10
03 6730 03 6736 03 6742 E6 6791-43 E2 6826	PASO ROBLES PASO ROBLES 5 NW PASO ROBLES FA4 AP PENITENCIA RAIN GAGE PETALUMA FS NO 2	995 803	5 SEC SEC	13 13	T265 T265	R128 R118 R128 R018 R078			35 35	40 24	00	12		5 00 8 00 9 54	900))	188 194 194	0		40 40 43 49

9

IT-TIN NUXBER YAME	ELEVATION (IN FEET)	No LUSH.	d a HUNM J	HANGE	ACFE TRACT AGE & MERIPIAN		. LATITU'E			* NGLIODE		DUPLING A	C PEHATOR' : INDEX NUMBER	REC 194 145012	RECORT ANDED	TAN T M TINE	COLUMN C. 10.
E2 6826-01 PETALUMA RURNS F8 6851-01 PH1LO 2 NW F8 6851-02 PH1LO 4 NW F9 6853 PH0FNIX LAKE DAM 02 6926 PINNACLES NAT MON	240 240 5 175	5EC 02 5EC 33 5EC 02	T15N	R15W R15W	M M M	39 39 37	05 3	0 0 18	122 123 123 123	28 3 37 (34 2	24 4	000		1959 1953 1937 1937			49 23 23 21 35
E5 6991-05 PLEASANTON NURSERY F8 7009 POINT ARENA E4 7070 PORT CHICAGO NAD E8 7086 PORTOLA STATE PARK F9 7107 POTTER VALLEY 3 NNW	122 5 50 422 5	SEC 20 SEC 12 SEC 08 SEC 06	T12N T02N T085	R17W R01W	N N N N N N N N N N N N N N N N N N N	38 38 37	01 0	00 00 02	122 123 122 122 122	42 (01 (12 (00 °	900 901		1939 1940 1946 1959 1953	1954		60 23 07 41 23
F9 7108 POTTER VALLEY 3 SE F9 7109 POTTER VALLEY PH D2 7150 PRIEST VALLEY D1 7190 OUIEN SABE HAY CAMP D1 7249 RANCHO OUIEN SABE	1014	SEC 27 SEC 06 SEC 21 SEC 27 SEC 04	T17N T20S T12S	R11W R11W R12E R07E R07E	0 # 4 4 4 4	39 36 36	22 (11 (51)	00 00 30	123 140 121	08 42 11	00 00 48	9 00 9 00 9 00 0 00 0 00		1952 1911 1898 1949 1931			23 23 27 35 35
E6 7339 REDWOOD CITY F9 7351 REDWOOD VALLEY E4 7414 RICHMOND D4 7539-01 ROOSEVELT RANCH E3 7643 S41NT HELENA	55 1100	SEC 09 SEC 24 SEC 31	T16N T205	R03W R12W R02E R05W	بر د	37	16	00	122 123 122 121 122	12 21 41	00 00 48	9 00 9 00 9 00 9 00 9 00 9 00		1899 1937 1950 1946 1907			41 23 07 27 28
E3 7646 SAINT HELENA 4 WSW E4 7661 SAINT MARYS COLLEGE D2 7668 SALINAS 2 E D2 7669 SALINAS FAA AP D3 7672 SALINAS DAM	625 80 80	SEC 04 SEC 17	T015	R02W		36	30 50 40 40 20	00 00 00	122 122 121 121 121 120	06 37 36	00	9 00 9 00 9 00 9 00 9 00		1939 1942 1958 1873 1942			21 07 27 27 40
E2 7707-01 SAN ANSELMO D3 7714 SAN ANTONIO MISSION D2 7716 SAN ARDO D1 7719 SAN BENITO D4 7731 SAN CLEMENTE DAM	440 1355	SEC 16 SEC 16 SEC 27 SEC 23	T225	R10E R08E	K M	37 4 36 4 36 4 36 4 36	01 00 30	00 48	122 121 120 121 121	15 54 04	00 06 54	900	NPG518	1957 1959 1894 1936 1940			21 27 27 35 27
D1 7755 SAN FELIPE HGHWY STN E8 7767 SAN FRANCISCO SUNSET E7 7769 SAN FPANCISCO WB AP E7 7772 SAN FRANCISCO F O B E8 7807 SAN GREGORIO 3 SE	365 300 8 52 355	SEC 30	1025	RO6E RO6W RO4W		4 37 37 37	46	00	121 172 122 122 122	30 23 25	00	900		1943 1948 1928 1931 1954			43 80 41 80 41
E6 7821 SAN JOSE E6 7824 SAN JOSE 2 D1 7834 SAN JUAN BAUTIST 3SSE D1 7835 SAN JUAN BAUTISTA MI D2 7845-10 SAN LUCAS GUIDIC1	200	SEC 10	T135		;)	37 4 36 36	22 49 50	00	121	55 31	00	900 900 900 804 806		1874 1943 1900 1962	1	02	43 43 35 35 27
E7 7864 SAN MATEO E2 7880 SAN RAFAEL E2 7880-O8 SAN RAFAEL NAT BANK E6 7912 SANTA CLARA UNIV D0 7916 SANTA CRUZ	30 31 25 88 125	SEC 25	TOZM	R04W R06W R01W		37 4 37	58 21	00 24	122 122 121	32 31	30 00	900 900 413 900 900		1874 1948 1876 1881 1866	1		41 21 43 44
D3 7930 SANTA MARGARITA 2 SW D3 7933 SANTA MARGARITA BSTR D2 7959-10 SANTA RITA MUTHER F9 7964 SANTA ROSA SEWAGE PT F9 7965 SANTA ROSA	1100 80	SEC 36 SEC 25 SEC 12 SEC 21	T295 T145 T07N	R12E	E M I	4 35 4 35 4 36 4 38 4 38	22 45 26	00 00 24	120 120 121 122 122	38 41 45	24 12	806		1940 1931 1962 1956 1888		03	40 40 27 49 49
F9 7965-03 SANTA ROSA PEDRANZINI E6 7998-01 SARATOGA CLARK E6 7998-02 SARATOGA GAP MAINT E6 7998-03 SARATOGA KRIEGE E6 8068 SEARSVILLE LAKE	272	SEC 16	T075 T085	5 R010 5 R020	e i e i	M 37	15	00	121 122 122	02	00	806 414 809 900		1962 1956 1966)	5	49 43 43 43
F9 8072 SERASTOPOL 4 SSE F9 8272 SKAGGS SPR LAS LOMAS D2 8276 SLACK CANYON D2 8338-D1 SOLEDAD CTF	150 1930 1730 204	SEC 00 SEC 30 SEC 20 SEC 10	5 T06 5 T10 7 T21 7 T21	R090 R120 R120 R120	d d E E	M 36	21 41 05 26	00	122 123 120 121	49 08	00	9 00 9 00 9 00 9 00 9 00		1939 1939 1959 1874 196	5		49 49 27 27 27
E2 8351 SONOMA E0 8376 S E FARALLON D2 8446 SPRECKELS MMY BRIDGE D2 8446-01 SPRECKELS E6 8447 SPRECKELS MILL-LAG+SE	20 27 60 48 384	SEC 1	5 T15:	5 R038 5 R038 5 R038	E	M 37 M 36 36	42	00	122 123 121 121 121	00 41	00	900 900 900 000 414		195: 194 190: 190:	i 5		49 80 27 27 43
E6 8519 STEVENS CREEK RES D1 8680 SUNSET BEACH ST PARK E2 8779 TAMALPAIS VALLEY D3 8849 TEMPLETON F9 8885 THE GEYSERS	85 250 773	SEC 2	9 727:	5 R121	E	36 31 M 35	54	00 42 56	121 122 120	50 32 42	00 36 21	900 901		193 195 195 188	6 9 5	0	43 44 21 5 40 49

	STATION	EVATION N FEET)	SECTION	TOWNSHIP	RANGE	RE TRACT	MERI	LATITUDE			ONGITUDE		OOPERATOR NUMBER	PERATOR'S INDEX NUMBER	RECORD BEGIN	RECORD ENDED	S MISSING	TTY CODE
NUMBER	NAME	ELE (IN	S	TO	pc.	40-AC	BASE	- LA	н	0	I LON	11	COC	COOF	щщ	ра, ра	YEARS	COUNTY
B9 9001 F9 9122	TIBURON TOPHAM TRACY PUMPING PLANT UKIAH UKIAH 4 WSW	400 623 1900		T015 1 T015 7 T15M			4 37 37 M 39	48 09		122 121 123 123		00	000 900 900		1960 1877 1951			21 23 23
E4 9185 01 9189	UPPER SAN LEANDRO FIL UPPER TRES PINOS	390 2050	SEC 0	1 TO25	R09E		м 3 ³ м 30	7 46 5 38		122	10		900		1944			07 35
D3 9221 E6 9270 F9 9273 E3 9305	VALLETON VASONA RESERVOIR VENADO VETERANS HOME	300 1260	SEC 1	2 T235 9 T090	R10W		M 31 M 31 M 31	7 14	36	120 121 123 122	58 01	00 00 00	426		1940 1939 1912			27 43 49 28
E4 9420 E4 9423 E4 9426	WALMAR SCHOOL WALNUT CREEK 2 ESE WALNUT CREEK 2 ENE	128	SEC 3	6 TO1	I ROZW			757	00 00	122 122 122	05 02	00			1954 1887 1944			07 07 07
E4 9427 D1 9473	WALNUT CREEK 4 E WATSONVILLE WATERWKS	400 95 50					3 3 M 3		00	121 121	46	00	900 900		1954 1880)		07 44
D0 9675 E3 9675-41 F9 9770 E6 9814	WILDER RANCH WILD HORSE VALLEY WOODACRE WRIGHTS	1240 430 1600	SEC	10 TOSI 23 TOS	5 R01W	-	M 3 3 M 3	8 17 8 00 7 08	53 24 00	122 122 121	11 38 57	13 30 00	900	049770	195()		48 21 43
F8 9851 E3 9861	YORKVILLE YOUNTVILLE GAMBLE			02 T12				8 55 8 26		123			900 806		1939			23 28

		_								
	TOTAL Oct.1	To Sept.30		60.69 73.64 78.12 28.21	30.64 18.85 21.54	45.12 21.39 22.90 21.55	22.15 20.88 16.22 19.77	14.55 15.69 14.01 22.30	20.92 40.64 40.90 16.77 21.34	21.23 13.13 18.82 17.06
		SEPT.		T 0,09 0,00 0,00	0.00	0, 00 0, 00 0, 03 0, 03	0.00 T 0.00 0.05	0.02 0.01 0.07 0.00	0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00
		AUG.		0,04 0,20 0,00	0,11 0.20 0.10		0,58 0,27 0,06	0.31 0.15 0.31 0.30 0.40	0.50 0.40 0.33 0.50 0.18	0.19 0.03 0.10 0.32
		JULY		00.000000000000000000000000000000000000	0.00	000000000000000000000000000000000000000	0.00 T 0.22 0.17	T 0.00 0.02 0.00	T 0.00 0.01 0.05 0.05	0,00 0,00 0,00 0,00
		JUNE		0.00 0.00 0.12 0.12	0°00 0°00 0°00	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.00 0.01 0.06 0.06	0.00 0.35 0.00 0.00	0,00 0,00 0,004 0,014
	1965	MAY		0.00	0.02 0.00	0.14 0.00 1 0.00 0.00	0.00	0.00 T 0.00 0.00	0.00 0.00 0.14 0.00 0.17	0.15 0.16 0.00 0.00
		APR.		7.11 10,13 2.80 9.90 3.31	3.43 2.13 1.67	1.46 4.29 2.31 2.66 2.82	2,63 2,65E 2,75 2,98	1.25 1.72 1.12 3.20	3.51 4.06 4.48 2.10 2.59	2.20 1.76 1.71 1.91 1.63
		MAR.		4.26 4.88 2.72 7.55 2.83	2.98 2.22 2.63	1.59 4.68 2.33 2.30 2.12	3.40 2.03 1.84E 2.41 3.08	2.30 1.75 1.94 2.97 1.90	1.78 3.22 3.35 1.94	2.57 2.07 1.73 2.29 1.48
		FE8.	- ^	2.34 2.96 1.37 2.90 1.75	1.71 1.04 1.76	0.74 2.35 0.93 0.88 0.34	0.80 0.80	0.49 0.49 0.44 0.81	0.67 1.70 1.57 0.39 0.60	0.54 0.30 0.68 0.93
in Inches		. NAL	IC AREA D stal Area)	11.16 14.08 3.33 13.92 3.51	3.78 1.70 3.19	1.66 6.14 1.60 2.51 2.57	6.82 3.55 4.01 1.85 3.48	1.50 2.67 1.47 2.69 4.80	4.45 6.13 5.89 2.31 2.19	2.31 1.35 2.40 2.49 2.44
Precipitation in Inches		OEC.	HYDROCRAPHIC AREA D Central Coastal Area)	22.81 26.57 10.82 28.40 9.77	13.06 7.66 8.31	4.04 20.25 9.38 9.72 7.25	17.20 8.40 6.74 3.84 4.22	5.73 5.67 5.87 9.53 7.40	6.28 18.51E 18.13 5.24 8.41	8.73 3.36 7.23E 6.65
Preci		. NOV.	I (Ce	8.53 11.93 4.07 11.90 4.90	3.81 2.82 3.22	2.21 5.38 2.94 2.99	5.44 3.01 2.95 3.34 3.34	1.65 1.94 1.65 4.16 2.70	2.57 5.10 4.95 2.87 3.44	3.12 2.09 2.44 2.93 2.37
	4	ocr.		4,44 2,80 1,31 3,33 1,97	1.67 1.08 0.66	1.10 1.76 1.23 1.15 1.98	1.73 1.19 1.64 1.90 1.65	1.30 1.28 1.19 1.47 1.47	1.12 1.52 1.63 1.37 1.24	1.42 1.95 1.74 1.16 1.21
	1964	SEPT.		0.00 0.00 0.00 0.00	0.20 0.00	0.00 0.00 0.13 0.32	0.00 0.09 0.19 0.19	0.00	0.01 0.00 0.21 0.24	0.0000.0000.000000000000000000000000000
		AUG.		0,15 0,09 0,12 0,11	0.17 0.10 0.10	0.24 0.25 0.16 0.05 0.00	0.14 0.05 T 0.26 0.13	0.17 0.15 0.21 0.22 0.20	0.14 0.21 0.23 0.00	0.27 0.24E 0.17 0.18 0.00
		JULY		0.00 0.00 0.00 0.02	0.00	0.00	0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00	00,00
	TUTAL July l	June 30		60.80 73.44 78.23 78.23 28.31	30.90 18.75 21.54	13.18 45.10 20.88 22.39 21.11	21.71 20.80 16.20 19.68	14.39 15.68 13.89 22.10	20.57 40.45 40.99 16.46 21.40	21.31 13.28 18.10 18.90 16.91
	STATION NAME			SANTA CRUZ COAST (DO) Ben Lonanda Beulder Creek Locatelli Rch Corraitea Daveeport Daveeport	Sante Cruz Sunset Beach State Park Wilder Ranch	PAJARO-SAN RENITO RIVERS (D1) Buena Vista Buena Vista Buena Chittenden Chittenden Cittenden Cienega	Freedom 8 NNW Gilroy Gilroy 14 ENE Hernandez 2 NW Hernandez 7 SE	Hollister Hollister Costa Hollister No. 2 Hollister 10. XE Morgan Hill SCS	Morgan Hill 2 E Mount Madonna Nount Madonna County Park Paicines Ohrwall Ranch Quien Sabe - Hay Camp	Rancho Quien Sobe San Bentco San Felipe Highway Station San Juan Bautiata 3 SSE San Juan Bautiata Misalon

						_					
	TOTAL Oct.1	To' Sept.30		23.25	19.77 	12.96 10.70 19.38 22.34 17.71	19.58 14.12 12.65 10.57 10.25	- 12.22 10.00 9.86 14.10	11.82	18.11 10.32 23.50 8.49	
		SEPT.		0,00 0,24 0,00	0.00 0.00 0.08 0.05 0.05	0.00 0.00 0.02 0.02	т 0.02 0.03 0.00	0.00 0.00 0.00	0.02	0,00 0,02 0,00 0,82	
		AUG.		0.21 - 0.28	0.07 0.26 0.31 0.17 0.09	0.01 0.00 0.16 0.31	T 0.42 0.31 0.05 T	- 0.00 0.11 0.22 0.36	0.40	0.00 0.05 0.05 0.05	
		JULY		T 0,02 0,00	0.00 0.00 0.03 0.03	0.10 0.00 0.05 T 0.22	0.19 0.00 T 0.00 0.02	0.02 0.20 0.08 0.00	0.00	0.04 0.23 0.15 0.29 0.10	
		JUNE		0.00	0.00 0.02 0.70 0.00	0.00 0.00 1.15 T	0.00 T 0.00 0.00	0,00 0,00 0,00	0.00	0,00	
	1965	MAY		0.00	0,00 0,00 0,07 0,07	0,00 0,00 0,17 0,27 0,09	T T 0.01 0.00	- 0,00 0,00 0,04	0,00	0,0000000000000000000000000000000000000	
		APR.		2.42 2.05 2.63	2.96 1.78 2.93 2.49 1.72	3.16 1.58 2.26 3.06	3.29 1.31 1.31 1.60 2.79	2.17 1.53 1.50 2.00	1.55	3.64 2.74 3.22 1.35 1.35	
		MAR.		1,43 2,75 2,38	2.67 - 3.12 2.08 1.51	2.39 1.74 2.44 2.48 2.65	2.52 1.79 1.70 2.16 1.36	2.01 1.82 2.13 1.89 2.12	1,16	2.42 1.40 3.63 1.03	
		FEB.	a)	0.53 0.50 1.08	1,07 0,74 0,50 0,42 0,32	0.65 0.46 1.05 1.06 0.50	0.86 0.39 0.44 0.56 0.29	0.55 0.68 0.30 0.37 0.60	0,22	0.82 0.53 0.36 0.30	
Precipitution in Inches		JAN.	HYDROGRAPHIC AREA D (Central Coastal Area)	2.99	3.21 0.95 3.41 1.74 0.86	0.84 1.60 2.56 3.71 1.86	3.09 1.14 0.85 0.98 1.06	1.28 1.77 1.02 0.84 1.28	0.59	2.59 1.02 4.99 1.23 0.74	
pitution		DEC.	Y DROGRAPH entral Co	5,74 3,73 10,49	5,44 2,96 10,17 6,60 2,17	2,45 2,29 6,45 6,36 4,23	4.56 5.48 5.13 1.87 1.18	5.30 2.25 2.55 4.27	4,18	4.27 1.33 4.35 1.55 1.62	
Preci		. NOV.	н О	2,55 2,55 3,39	2.72 2.21E 3.83 2.51 1.10	1,98 1,53 3,29 3,71 2,98	3.70 2.72 2.16 1.86 2.45	1.70 2.50 1.35 1.38 2.70	2.76	3.40 1.54 4.18 1.80 1.00	
	4	OCT.		0.87 1.47 1.10	1.63 0.63 1.72 1.26 1.28	1, 38 1, 50 0, 78 1, 58 1, 84	1.37 0.85 0.71 1.47 1.10	1.28 0.92 1.03 1.03 0.68	0*94	0.93 1.51 2.05 0.76 0.83	
	1 964	SEPT.		0,00 0,00 0,11	0,00 0,00 0,20 0,20	0.00 0.00 0.00	0,05 T 0,13 0,00	T 0.00 0.20 0.20 0.24	0,00	0,12 0,00 0,00 0,00	
		AUC.		0.10 0.23 0.05	0.15 0.26 0.23 0.31	0.05 0.13 0.35 0.15 0.26	0.13 0.20 0.20 1 T	0.24 0.13 T T T	0,20	0.00 0.00 0.10 0.10 0.35	
		JULY		0.00 0.00	0, 00 0, 04 0, 00 0, 00	0,00 0,00 0,09 0,09	т 0.00 0.00 0.00	0.01 0.00 T T	0° 00	0.00	
	TOTAL July 1	To June 30		23,13	19.85 	12.90 10.83 19.60 22.18 17.47	19.57 13.88 12.51 10.63 10.23	12,24 9,89 9,96 13,95	11.60	18,19 10,07 23,40 8,18	
	STATION NAME			PAJARO-SAN BENITO RIVERS (D1) Spreckela H111-Laguna Seca Upper Trea Pinoa Wataonville Water Works	LOWER SALINAS RIVER (02) Arroyo Seco Del Nonte Fremont Peak State Park Conzales 9 EXE Greenfield Baker	Hame@ Valley King City Monterey Paloma Pinnacle@ National Monument	Prieat Valley Salinas 2 E Salinas PAA Aliport San Aido San Lucas Guidici	Sante Rita Muther Slack Canyon Soleded CF Soleded CF Spreckela Highway Bridge	Spreckela	UPPER SALINAS RIVER (03) Atsacadero HNS Bradley Bryoon Cholame Hatch Ranch La Panza Ranch	

A - **A**

-	_							
	TOTAL Oct.1	To Sept.30		13.14 13.63 12.57 13.87	12.56 12.58 11.57 19.93 19.79	31,90 32,37 16,63 9,84	42.70 17.65 31.09 32.28 19.28	
		SEPT.		0,00 0,00 0,43 0,43	0.15 0.05 0.12 0.00 0.00	T 0.05 0.30	0,00 0,00 0,00	
		AUG.		T 0,09 0,000 T 0,000	0.03 0.03 1 T	0.02 0.02 0.00	0.07 0.17 0.05 0.17 0.25	
		JULY		0.02 0.00 0.32 0.25	0.04 0.08 0.05 0.00	0.00 T 0.01 0.18	T 0,00 0,08 T 0,00	
		JUNE		0,00 0,00 0,00	т 0.00 0.00 0.00	T T 0.00 0.00	T 0,00 0,00 0,00	
	1965	MAY		0,0000000000000000000000000000000000000	0.00 1. T T	0.00 0.00 T 0.00	0.13 0.16 0.16 T 0.14	
		APR.		2.31 2.11 2.34 3.34 1.85	2.48 2.29 3.54 3.54	5.33 5.50 3.03 2.24	4.76 2.68 3.74 4.04 2.92	
		MAR.		1.80 2.70 2.06 1.28 1.60	1,16 2,02 1,98 2,66 2,66	3.77 3.85 1.92 1.64	4.79 2.38 4.51 T 2.45	
		PEB.) 28)	0.44 0.64 0.62 1.01	0.51 0.47 0.51 0.48 0.48	1.05 1.26 0.77 0.56	1.78 0.83 1.04 1.71 1.05	
Precipitation in Inches		JAN.	HYDROCRAPHIC AREA D (Central Coastal Area)	2.31 1.76 1.83 2.44 1.49	2.50 2.61 2.18 3.36 3.36	5.49 5.39 3.19 0.67	8.38 2.16 7.05 7.67 2.92	
pitation		DEC.	HYDROCRAPI Central Co	2.99 2.52 2.55 2.43 1.84	2.37 1.76 1.74 4.80 4.69	9.40 9.08 3.55 1.58E	13.96 5.41 8.65 11.30 4.77	
Prect		. NON	0)	2.35 2.09 1.95 1.87 1.40	2.27 2.37 1.54 3.94	5.11 5.49 3.13 1.67	5.87 3.17 3.38E 4.99	
	4	OCT.		0.83 1.72 1.20 0.75 0.75	1,05 0,90 0,83 1,15 1,82	1,73 1,73 1,03 1,00	2,96 0,69 2,54 0,87	
	1964	SEPT.		0.00 0.00 0.28 0.28	0.03 0.00 0.16 0.16	T 0.11 0.00	0.36 T 0.00 0.22 0.30	
		AUG.		0.04 0.20 0.00 0.00	0.08 0.08 0.00 0.00 0.00	0.10 T 0.09 0.10	0.00 0.25 0.11 0.00	
		JULY		0,00 0,00 0,00 0,00	0,00 0,00 1 T	T 0.01 0.00	0,00 0,00 0,00 0,00 0,00	
	TOTAL July 1	To June 30		13.07 13.74 12.59 13.40	12.45 12.50 11.44 20.09 19.79	31.98 32.42 16.71 9.46	42.99 17.73 31.07 32.33	
	STATION NAME			UPPER SALINAS RIVER (D3) Linn Ranch Lockwood 2 N Nacimienco Oam Parkiteld 7 NWW	Paso Robles 5 NV Paso Robles 5 NV Paso Robles FAA AP Sallnas Dem San Antonio Mission	Santa Margarita 2 SV Santa Margarita Booater Templeton Valleton	MONTERFY COAST (14) B415 Star Starte Park Carmel Valley Lucia Willow Springs Roosevelt Sanch San Clemente Dam	

				T							
	TOTAL Oct.1	To Sept.30		•	41.62	49.88 33.69 31.01 47.88 25.49	34.60 54.93 46.27 40.48	29.94 37.59 33.02	47.97 42.68 36.93	16.34 19.45 19.91 20.22	20.30 27.24 24.62
		SEPT.		0.00	0.00	0.00	00.0	0.00	0.00	00.0	0.00
		AUG.		.18	0.68	0.63 0.70 0.78 0.78 0.78	0.35 0.52 0.55 0.77 0.80	0.66 0.86 1.29	0.80 0.90 0.59 3.16	0.22 0.93 0.20 0.43	0.36 1.10 0.85
		ALULY		0.00	0.00	T 0.00 0.00 0.00	0.00 0.00 0.00 T	0.00 0.00 T	0.004 T 0.00	0.00	0.04 0.04
		JONE		0.00	0.07	0.00 0.00 0.00 T	0.00	0.00 0.08 T	0.00 T 0.00	0.00	0.00
	1965	YAY		00.0	00*00	0.00	0.00	0.00 0.00 T	0.06	0.12 0.00 0.13 0.12 0.00	0.12 0.00 T
		APR.		,	6.88	6.55 5.11 4.13 6.53 3.57	4.85 6.70 5.58 4.64 5.63	3.44 6.06 4.16	5.50 4.82 4.50	2.41 2.62 2.79 2.94 3.58	3.57 2.81 3.08 3.29
		MAR.		1.48	3.70	4,00 3.10 1.88 2.24 1.53	1.90 4.40 2.97 2.62 1.90	2.08 3.71 2.47	1.50 - 1.04 2.01	1.02 1.36 1.52 1.35 2.34	1.56 1.85 1.23 1.68 -
		FEB.	(u)	64.	2.07	2,89 1.94 1.51 1.26 1.14	1.60 2.45 2.50 2.05 2.07	1.23 2.09 1.08	1.46 1.29 1.39	0.82 1.03 0.85 0.95 1.15	0.88 0.59 0.97 0.80 1.26
in Inches		JAN.	HYDROCRAPHIC AREA E San Francisco Bay Area)	'	7.12	9.70 6.05 6.87 11.43 5.19	7.45 11.80 11.94 8.93 8.95	5.33 6.74 7.19	10.44 9.24 6.81 1.87	2.97 4.33 4.00 4.34 6.34	6.23 4.46 5.02 5.18 9.31
Precipitution in Inches		DEC.	/DROGRAPH: n Francise	3.76E	11.57	15.38 9.42 7.37 15.25£ 5.81	8.80 16.35 12.33 12.29	8.96 9.99 10.83	17.82 16.19 10.84 3.60	4.08 4.55 5.47 5.01 11.55	8.88 5.51 10.86 7.93 10.22
Preci		. NON	H) (Sai	2.50E	6.32	6.90 4.73 5.33 7.53 5.42	6.25 8.11 6.44 5.83 4.67	5.88 5.30 4.08	8.06 5.70E 7.20 5.73 1.87	2.88 2.92 3.05 2.85 4.07	3.84 2.97 3.40 3.37 7.02
		ocr.		1.14	3.21	3.83 2.64 3.22 2.86 2.42	3.40 4.60 3.96 3.20 4.17	2.36 2.76 1.92	2.29 2.80 2.24 2.36 1.16	1.82 1.71 1.90 2.55 2.55	1.97 1.75 1.54 1.48 2.34
	1964	. F438		0.00	0.00	0.00	0.00 0.00 0.00 0.00	0.00 0.00	0.00 T 0.00	T 0.00 0.00 0.00	0.00 0.00 0.00 0.00
		AUG.		00*0	0.03	0.03 0.02 0.00 0.02 T	0.00 0.04 0.03 0.03	0.03 0.01 0.00	0.00	0.00 0.04 0.03 0.05	0.00 0.04 0.04 0.05 0.02E
		JULY		0.00	0.00	T 0.00 0.10 0.10	0.00 0.00 1 0.00 0.00	0.04 0.000 T	0.00 1.10 T 0.04	0.00 T 0.04 0.04 0.03	0.03 0.00 0.10 0.10 0.10
	l flut TATUL	Jone 30		1	40.97	49.28 33.01 30.31 47.22 25.13	34.25 54.45 45.74 39.57 39.71	29.35 36.74 31.73	47.13 42.09 33.83	16.12 18.56 19.78 19.88 31.63	27.08 19.98 26.24 23.89
	STATION NAME			SAN FRANCISCO BAY (EU) S. E. Farallon	<u>COAST-MARIN (E1)</u> Muir Woods	MARIN-SONOM (E2) Kuriteid Nill Valley Nevicle Arrenae Oukville 4 M No. 2 Peruhama Fire Station No. 2	Petalama - Borna Phorix Lake Dam San Anselmo San Rafach San Rafach San Rafach	Sonoma Tamulpafa Valley Tiburon - Topham	<u>MNPA-SOLANO (E3)</u> Angoin Paulitic Union College Atleas Rood Cultaerosa Cultaerosa Collinero Villey Collinerille	Uenverton 1 S Dutton Landing Fairfield Fairfield Police Station Green Vailay	Lake Gorry Nare Island Navy Napa State Hospital Onkville 1 MM

TABLE A-2

	TOTAL Oct.1	To Sept.30		40.84 52.90 - 28.89	26.27 24.68 28.27 16.61 21.29	29.66 27.91 22.15 23.68 20.88	26.41 19.03 27.99 18.33 16.05	23.84 34.00 25.07 24.27 22.35	20.14 18.63	24.29 22.46 15.30 14.37 28.34E
		SEPT.		T 0.00 1	0.00 T 0.00 0.00	0.01 0.00 0.00 1 T	0.02 0.00 T T	0,00 T T 0.00	0.00	0.00 0.00 0.02 T 0.00
		AUG.		0.82 0.60 0.83 0.83 0.55	0.20 0.18 0.05 0.03 0.39	0.11 0.06 0.10 0.14 0.14	T 0.00 0.10 0.06 0.17	0.36 0.07 0.10 0.18 0.18	0.17 0.20	0.35 0.65 0.24 0.21 T
		JULY		0.02 0.00 0.03 -	0.00 0.03 0.00 0.00	0,00 T T T	0,00 T 0,00 0,00	0.00 0.04 0.02 T 0.03	0.00	0.00 T T T
		JUNE		T 0,00 0,00 0,00	T 0.00 0.40 0.40	0.00	0.00 0.00 T 0.00	0.00 T 0.00 0.00	0.00	0.00 0.00 0.00 0.00
	1965	MAY		T 0,000 0,04	T T 0,00 0,22 0,00	0.00 0.00 0.03 0.03	T 0.00 T T	0.00 0.00 T 0.01	0.00 T	0.00 0.01 0.00 0.00
		APR.		4.59 8.10 4.42 2.72 3.89	3.23 3.79 4.46 0.49 3.18	3.39 4.12 3.29 3.58 3.27	4.45 3.01 4.37 2.54 3.10	3.47 4.67 3.99 3.96 3.19	2.83	3.80 4.20 1.39 4.82
		MAR.		1.33 2.90 1.50 1.51 1.28	1.54 2.10 1.74 1.12 1.79	3.50 1.82 1.79 1.76 1.56	2.23 1.40 2.55 1.95 1.07	1.61 2.56 2.04 1.64 1.34	1.45	2.34 1.92 1.97 1.73 2.49
		FEB.	~	1.24 1.72 0.99 0.78 1.12	0.68 0.88 0.85 0.03 0.03	1.09 0.92 0.75 0.74 0.80	0.83 0.98 1.15 0.82 0.47	1.24 1.08 0.98 0.80 0.66	0.56	0.92 0.83 0.55 0.59 1.24
in Inches		JAN.	C AREA E 8ay Area	9.63 9.18 9.54 6.71 6.56	5.77 4.53 5.99 3.86 5.24	4.65 5.94 4.52 4.84 4.01	4.20 4.03 5.58 2.95 2.56	4.53 7.11 4.86 4.58 4.58	4.11 3.47	3.15 3.37 2.72 2.11 2.78
Precipitation in Inches		DEC.	HYDROGRAPHIC AREA E (San Francisco 8ay Area)	14.22 18.21 14.56 14.94 8.65	9.60 8.27 10.47 3.19 5.86	10.89 10.12 7.32 8.01 6.70	9.13 4.76 8.66 5.31 4.95	6.93 11.84 7.52 8.88 7.97	7,16	9.93 7.15 4.71 4.91 11.51E
Prech		. VON	IIY (San	6.81 9.53 5.82 4.32 6.54	4.02 3.63 3.64 4.12 2.35	4.75 3.93 3.37 3.48 3.27	4.03 3.48 4.18 3.23 2.55	4.10 5.44 4.21 3.39 3.33	2.90 2.63	3.57 3.06 2.66 2.44 4.64
		OCT.		2.18 2.61 2.34 3.49 0.13	1.18 1.28 1.04 0.04 1.55	1.27 1.00 1.01 1.10 1.11	1.52 1.37 1.38 1.46 1.18	1.60 1.19 1.35 1.01 1.02	0.96 1.18	0.23 1.27 1.04 0.85 0.83
	1964	SEPT.		0.00	0.00 0.00 0.02 0.00	0.00	0.00 0.00 0.00 0.00	0.00	0.00	0.05 0.15 0.00 0.04 0.00
		AUG.		T 0.00 0.03 0.03	0.03 0.01 0.01 0.18 0.02	0.11 0.02 0.00 0.02 T	0.14 0.00 0.03 0.03	0.01 T 0.05 0.00 0.03	0.00	0.04 0.08 0.21 0.12 0.12
		JULY		0.02 0.00 0.00 0.03	т Т 0.00	0.04 0.00 0.00 T	$\begin{array}{c} 0.02\\ T\\ 0.10\\ 0.03\\ 0.00\end{array}$	T 0.08 0.00 0.00	0.00 T	0.00 0.00 T T
	TOTAL July 1	To June 30		40.04 52.30 35.47 28.29	26.05 24.49 28.20 16.78 20.92	29.69 27.87 22.05 23.56 20.72	26.55 19.04 28.02 18.32 15.90	23.49 33.97 25.03 24.27 22.17	19.97 18.4 3	24.03 22.04 15.25 14.32 28.46E
	STATION NAME			MAP-SOLANO (E3) Saint Melena Saint Melena 4 WSW Veterana Home Willd Horse Willey Yourcviile Gamble	EAST BAY (24) Alamol 1 N Barkeley Burkon Ranch Concord 3 E Crockete	Hayward 6 ESE Lafayette 2 NNE Martina 3 8 Martina 3 SE Martina Fire Station	Mount Olablo North G.tc Oakland Gity Mall Oakland 39th Arenue Oakland WB AP Port Ghicago Maval Depot	Richmond Saint Mary's College Opper San Londro Filters Wilmar School Walnut Greek 2 ESE	Walnut Creek 2 ENE Walnut Creek 4 E	AlANEDA CREEK (52) Calaverus Rescrvoir Gerber Ranh Livermore Secage Plant Livermore 2 SSM Nount Hamilton

	<u> </u>									
	TOTAL Oct.1	To Sept.30		12.34 21.31 23.49	15.47 35.69 43.51 22.40	17.34 15.68 23.67 15.81 21.51	29.82 20.28 40.15 24.35	56.92 20.88 16.19 19.47	21.77 15.09 14.13 14.02 21.27	63.54 - 34.75 35.84 22.78
		SEPT.		0.00	0.00 0.00 0.08	0.00 T 0.19 0.00	0.00 0.17 0.00 0.00 0.00	0.00 0.00 0.01 0.01	0.01 T 0.00 0.00	0.12 0.00 0.03 0.00
		AUG.		0.18 0.10 0.10	0.11 0.33 0.07 0.20	0.15 0.03 0.02 0.30 0.31	0.12 0.50 0.20 0.12 0.12	0.08 0.50 - 0.01 0.43	0.07 0.16 0.06 0.07 0.10	0.19 - 0.03 0.12
		ALULY		0.00	0.00 T RE 0.00 T	T 0.00 0.78 T 0.00	н 0.00 1.00	нн ⁰⁰ .61	0.00 T T T	0.00 0.00
		JUNE		0.00	0.00 0.00 0.05 0.05	0.00 1 0.00 0.00 0.00	00.0 0.00 1 0.00	0.10 0.00 0.00 0.00	т 0.00 1.00 0.00	0.0000000000000000000000000000000000000
	1965	MAY		0.00	T 0.00 0.08 0.08	0.00 1 0.00 0.00	0.00 0.00 T 0.00	0.00	0.00	0.0000000000000000000000000000000000000
		APR.		1.77 2.70 3.14	2.23 6.35 1.30 4.62 3.47	2.43 2.26 3.26 3.36 2.58	4.80 3.54 7.77 3.36 2.94	7.39 3.51 4.03 2.47 2.78	3.25 1.93 2.28 2.15 2.80	8.80 3.42 5.97 3.36
		MAR.		1.55 2.60 2.24	1.67 2.11 1.85 3.01 2.18	1.20 1.35 1.94 1.27 1.27	1.46 1.67 3.08 1.82 1.51	3.78 1.78 1.58 1.75	1.96 1.74 1.41 1.63 1.55	3.39 1.81 2.37 2.13 1.98
		FEB.	a)	0.50 0.84 0.77	0.58 1.13 0.45 1.40 0.77	0.72 0.40 0.75 0.67 0.75	0.93 0.63 1.36 0.85 0.81	2.10 0.67 1.01 0.77 0.70	1.08 0.48 0.39 0.48 0.48	2.21 0.84 1.50 1.09 0.93
in Inche		JAN.	IC AREA E o Bay Are	1.45 2.93 4.21	2.55 7.96 8.53 4.72	2.72 2.65 4.04 2.76 3.58	6.63 4.35 3.07 3.43	12.67 4.45 6.26 2.33 2.55	3.88 2.13 1.94 1.62 4.02	12.36 4.25 5.97 7.08 3.76
Procipitation in Inches		OEC.	HYDROGRAPHIC AREA E (San Francísco Bay Area)	4.23 7.08 8.10	4.86 11.19 5.80 16.58 6.96	5.40 5.09 7.90 4.38 8.18	10.15 5.66 15.24 7.71 5.61	18.18 6.28 8.48 5.29 6.82	6.63 5.00 4.60 6.46	22.20 6.89 12.30 11.33 7.13
Preci		NOV.	H (San	1.99 3.73 3.82	2.62 5.17 3.43 7.83 3.01	3.68 2.89 3.45 2.21 2.96	4.34 2.61 7.11 4.55	9.70 2.57 3.56 3.44	3.59 2.69 2.73 4.25	11.85 4.72 5.52 7.36 4.28
	79	OCT.		0.67 1.10 1.03	0.85 1.45 1.20 1.26 1.09	1.04 1.01 1.31 0.86 1.25	1.39 1.32 2.32 1.26	2.92 1.12 1.32 0.80 1.00	1.30 0.96 0.72 1.10 1.32	2.32 - 1.106 1.122
	1964	SEPT.		0.00	0.01 0.00 1 0.00 0.00	0.02 0.00 0.00 0.00	0.01 0.00 0.01 0.00	0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.02 0.00
		AUG.		0.09 0.23 0.06	0.12 0.11 0.10 0.09 0.10	0.15 0.16 0.06 0.08 0.15	0.15 0.16 0.22 0.18 0.10	0.23 0.14 0.10 0.12 0.00	0.08 0.10 0.13 0.18 1.17	0.14 0.20 0.05 0.14 0.18
		JULY		0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 T 0.00 0.00	0.00	0.00 0.00 T 0.00	т т 10,00	0.00 1 0.00 0.00
	TOTAL July 1	To June 30		12.25 21.21 23.37	15.49 35.47 16.60 43.49 22.30	17.36 15.81 22.81 15.59 21.35	29.86 19.94 40.18 24.41	57.07 20.53 16.29 19.13	21.77 15.03 14.20 14.13 21.34	63.37 34.74 36.00 22.84
	STATION NAME			ALAMEDA CREEK (E5) Newark Niles-Pinna Flessanton Nursery	SANTA CLARA VALLY (E6) Alamica Ferciation Pond Alamden Reservoir Berryeasa 1 Black Hountain 2 SM Calero Reservoir	Cambrian Park Cambrian Park Conte Reservoir Evergreen Gilroy 8 NE	Guadalupe Regervoir Lervy Anderson Dam Lexington Regervoir Les Gatos Los Gatos	Los Gatos 4 SW Morgan Hill 2 E Morgan Hill 6 MNW Palo Alto City Hall Penitencia Rain Gage	Redwood City San Jose San Jose Occid. F. F. S. Santa Clare University Saratoga-Clark	Saratoga Gap Maintenance Saratoga-Kriege Saraville Lake Stevena Grock Reservoir Vasona Reservoir

sona Rasarvoir 22

	TOTAL 0ct.1	To Sept 30		55.09	22.24 20.80 22.79 18.44	25.40 34.66 51.20 23.52 28.77	
		SEPT.		00*0	0.00 T T 0.00	T 0.04 0.03 0.03 0.03	
		AUG.		0.19	0.23 0.29 0.49 0.16	0.23 0.18 0.08 1.20 0.25	
		JULY		00*0	0.00 T 0.02 0.00	T 0.00 T 0.03 0.02	
		JUNE		0,13	0.00 T 0.00	0.06 0.19 0.05 0.01 0.16	
	1965	MAY		00*0	0.00 T 0.00	T 0.00 T 0.03	
		APR.		6.59	4.00 3.47 3.24 3.24	5.22 5.43 7.59 4.48	
		MAR.		3.41	1.92 1.76 2.92 1.88	1.58 3.58 3.46 2.71 2.99	
		FEB.	0	2.00	1.01 0.91 0.94 0.47	1.40 1.46 1.87 0.96 1.27	
n Inches		JAN.	HYDROGRAFHIC AREA E (San Francisco Bay Area)	11.05	4.49 4.37 3.97 3.23	4.41 6.09 11.21 4.49 5.35	
Precipitation in Inches		OEC.	HYDROGRAPHIC AREA E n Francisco Bay Area	21.16	6.01 5.42 5.35 5.65	7.50 10.34 17.29 5.25 8.44	
Preci		. NOV.	HY (San	7.61	3.40 3.32 3.99 2.92	3.11 6.24 7.88 3.75 4.57	
		OCT.		2.95	1.18 1.26 1.90 0.89	1.89 1.11 1.62 1.58 1.18	
	1964	SEPT.		0*00	0.00 T 0.00	т 0.00 1 1 1	
		AUG.		0.28	0.02 0.01 0.01 0.08	T 0.10 T 0.09	
		ALUL		00.0	0.00 T 0.00	0.00 0.30 0.01 0.06	
	TOTAL July 1	To June 30		55.18	22.03 20.52 22.29 18.36	25.17 34.84 51.14 22.38	
	STATION NAME			<u>SANTA CLARA VALLEY (E6)</u> Wrights	<u>BAYSIDE-SAN MATEO (E7)</u> Burlingame San Francisco WB AP San Francisco Fed. Off. Bidg. San Mateo	COAST-SAN MATED (E8) Haif Moon Bay La Honda Portola State Park San Francisco Richmond Sunset San Gregorio 3 EE	

_										
	TOTAL 0ct.1	To Sept.30		49.40 54.78 41.70 39.24E	38.98 46.86 49.49 49.13 42.78	82.42 61.67E	59.26 31.55 38.14 75.43 56.07	46.53 42.35 43.93 53.94 47.97	48.91 45.86 39.62 65.63 58.64	45.75E 59.00 47.05 34.82 28.62
		SEPT.		0.00 0.00 0.014 0.14	0,06 0,00 0,00 0,11	0,00	0,00 1 0,00 0,00	0.00 0.00 0.00 0.00	0.00 T 0.00 0.01	T 0.00 0.00 0.00
		AUG.		0.38 0.64 0.45 0.24E 0.24E	0.38 0.45 0.44 0.33 0.27	0.60	0.46 0.35 0.35 0.35 0.35	0.62 0.32 0.45 0.49	0.52 0.55 0.50 0.74	0.60E 0.65 0.68 0.33 0.34
		JULY		0.00 0.07 0.11 0.08	0,16 0.00 0.06 0.09 0.23	0.02 0.03	0.00 0.00 0.02 0.03	0.00 0.02 T 0.04	0.04 0.02 T 0.00	0.01E 0.00 0.00 0.00
		JUNE		0.04 T 0.00 0.14 0.11E	0.08 0.10 0.00 0.20	0,05	0,00 0,00 1 T	0.03 0.02 T 0.00	0,00 0,00 0,00 0,00	0.02E 0.00 0.14 0.00 0.00
	1965	MAY		0.01 0.00 0.13 0.08	0.05 0.00 0.00 0.00	0,00	0,00 0,00 0,00 0,00	0,00 0,02 1,00 1	0,00 0,00 0,00 0,06	0.02 0.00 0.01 0.01
		APR.		6.50 6.77 9.53 4.96 4.75	6.38 5.44 6.49 6.59	11.42 9.01	8.65 5.16 0.00 9.64 7.91	4.29 5.29 8.02 5.75	6.22 5.59 7.46 8.05	5.35 7.32 5.46 3.90
		MAR.		2.48 2.31 2.06 2.45	2.71 1.68 1.72 1.71 2.46	3.81 2.58	5,10 1.90 4,42 5,04 1,95	2.80 1.72 2.38 2.68 1.58	1.56 1.73 2.45 2.02 4.66	1,34 5,08 4,10 2,28 2,31
		FEB.		0.84 2.32 1.87 1.65	1.68 1.39 1.56 1.49 1.83	2.62 2.02	3.35 1.44 2.77 3.13 1.77	* 1.81 1.88 2.47 1.94	1.92 1.33 1.80 1.80 3.09	1.41 3.18 2.45 1.82 1.51
In Inches		JAN.	HYOROGRAPHIC AREA F (North Coastal Area)	9.44 10.05 15.17 5.27 3.88	6.05 8.00 9.56 6.98	15.75 11.38	10,90 7.61 8.27 113.08 11.15	8.05 9.93 9.68 11.00 10.64	10.53 8.91 8.22 13.37 11.20	10.53 12.02 7.30 6.83 5.01
Precipitation in Inches		DEC.	Y DROGRAPH orth Coas	18.53 18.53 18.42 26.54E 14.58 13.66	9.07 17.63 18.21 17.27 10.87	27.32 21.84E	17,11 5,95 11.73 23,44 17,98	18.97 11.53 11.71 14.53 15.07	15,54 16,20 9,65 26,82 16,73	16.83 16.79 13.04 8.59 6.97
Prect		• NON	H N)	8.80 10.07 9.63 9.27	7.91 9.70 9.62 10.16 9.14	14,18 10,18	9.76 5.74 6.48 113.94 10.21	9.85 7.85 8.47 10.38 9.14	8.18 8.80 7.25 10.95 9.27	7.89 9.01 7.88 6.42 5.41
		OCT.		2.38 4.13 4.79 2.57 3.03	4.45 2.47 2.79 2.73 4.06	6.65 4.16	3.93 3.40 4.05 4.57 4.57	1.92 3.84 4.22 4.46 3.50	4.40 2.73 3.95 2.35 5.03	2.34 4.95 4.39 3.08 3.17
	1964	SEPT.		0,00	0.0000000000000000000000000000000000000	0.00	0,0000000000000000000000000000000000000	0.00 0.00 0.00 1	0,00,00,00,00,00,00,00,00,00,00,00,00,0	л 0,00 0,00 0,00
		AUG.		0.02 0.01 0.00 0.07 0.00	T 0.00 0.00 0.00 0.00	0.00	0,00 0,00 1 0,00	0.00 0.03 0.02 0.00	0.00 0.00 1 0.05	0.00 0.00 0.05 0.04
		JULY		T T 0.00 0.18 0.13	0.00 0.00 0.00 0.00	0.00	0.00 0.00 0.02 0.02	0.16 0.17 0.20 0.04	0.06 0.11 0.00 0.05 0.05	0.02 0.00 0.00
	TOTAL July 1	Ta June 30		49.04 54.08 41.52 39.01E	38.41 46.41 48.99 48.71 42.25	81,80 61,19E	58.80 31.20 37.72 75.08 55.59	46.07 42.21 43.69 53.58 47.47	48.41 45.40 39.12 65.02 58.10	45.75E 58.35 46.45 34.53 28.28
	STATION NAME			MENDOCINO COAST (F8) BOONVILLE HDS BOONVILLE HDS Cloverdale 11 W Fort Bragg Aviation Fort Bragg Aviation	Fort Roaa Navarro 1 NW Philo 2 NW Philo 4 NW Point Arena	Skagga Spr. Las Lomaa Ranch Yorkville	RUSELAN RIVER (79) Alphor Jam Ban Tempe Dam Carade Dam Carade of 3 SSE Cloverdale 3 SSE	Coyote Dam Graton Graton 1 W Guerneville Healdaburg	Healdsburg No. 2 Hopland Largo Station Inverneaa-Mery Kellogg Kent Lake	Knighte Valley Lagunites Lake M. Tenalpais 2 SW Nicasio NNW Novaco 8 NNW

	TOTAL Oct.1	To Sept.30		56.69 57.37 28.51 31.46 51.06 68.85 46.75 46.75
		SEPT.		000000 0 000 H H 00 000000 0 000 H H 00
		AUG.		0.58 0.54 0.57 0.57 0.46 0.46 0.46 0.46 0.46 0.48
		JULY		0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
		JUNE		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	1965	MAY		0000 1 1 000 000 000 000 000 000
		APR.		7.49 3.74 3.85 5.04 5.04 6.00 6.12 9.12 5.45 5.45
		MAR.		3.23 1.76 1.03 0.97 0.97 2.28 3.44 44
		FEB.		2.80 1.110 1.150 1.27 1.24 1.32 2.39 2.39
in Inches		JAN.	HYDROGRAPHIC AREA F (North Coastal Area)	11.35 6.78 5.25 5.27 6.63 RE - - 9.27 9.83 9.83
Precipitation in Inches		DEC.	fY DROGRAPH forth Coat	15.33 17.61 66.12 8.64 8.66 8.66 8.66 24.46 21.05 24.26 14.68 14.68
Preci		. VON		11.24 8.99 9.73 9.73 6.12 7.08 10.25 11.74 6.62 6.62
		ocr.		4,65 1161E 2.01 2.01 2.12 3.60 3.40 3.46 3.46 3.46
	1964	SEPT.		0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
		AUG.		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
		AIUL		$\begin{array}{c} \begin{array}{c} 0.02\\ 0.05\\ 0.05\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.02\\ 1\end{array} \\ \end{array}$
	TOTAL Julv 1	June 30		56.17 56.75 27.98 27.98 30.97 50.61 68.41 69.41 69.41 69.41
	STATION NAME			MUSSIAN RIVER (F9) Decter Valley 7, 85 Porter Valley 7, 81 Redwood Valley Santa Roaa Sewage Flant Santa Roaa Pedrintini The Ceyaers Ukiah Ukiah Ukiah 4 MSM Venado Noodaera

						Ter	perature	in Degree	Temperature in Degrees Fahrenheit	eit								
STATION NAME		SEASON July 1			1964								1965					SEASON Oct. 1
		to June 3/1	JULY	AUG.	SEPT.	ocr.	• NON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	ALUL	AUG.	SEPT.	to Sept 30
							HY DI	HYDROGRAPHIC AREA D Central Coastal Area)	C AREA stal Ar	D ea)								
SANTA CRUL COAST (DO)	Max.	98	93	93	98	91	67	66	67	74	73	84	84	81	88	90	88	91
-	Min.	- 27	τņ	45	40	39.	28	31	27	32	38	35	07	42	67	53	45	27
Ben Lomond	Avg. Max.	69.1	83.1	82.4	79.5	78.4	58.1	57.0	56.7	64.3	62,0	65.1	73.2	69.5	79.2	80.7	74.1	68.2
	Avg. Min.	45.4	49.4	48.0	47.2	47.0	40.3	42.2	39.9	41.1	43.3	48.1	47.1	51.2	52.9	55.2	52.0	46.7
	Avg.	57.3	66.3	65.2	63.4	62.7.	49.2	49.6	48.3	52.7	52.7	56.6	60.2	60.4	66.1	68.0	63.1	57.5
	Max.	- 84	72	52	d1	24	67	61	70	67	67	78	W	64	68	78	70	. 84
	Min.	34	46	48	45	45	39	39	34	38	42	39	40	43	46	50	47	34
Davenport	Avg. Max.	61.6	7.77	63.5	66.2	67.9	60.0	57.2	57.3	58.1	56.6	59.1	57.1	59.0	61.7	66.5	64.4	60.4
	Avg. Min.	47.8	50.1	51.7	50.4	6.13	46.3	46.9	45.6	44.3	45.6	47.0	45.1	49.1	50.4	53.5	51.5	48.1
	Avg.	54.7	6:.3	3.12	52.3	53.9	53.2	52.1	51.5	51.2	51.1	53.1	51.1	54.1	56.1	60°.0	58.0	54.3
	Max.	100	62	85	96	100	72	67	75	76	78	82	79	83	83	98	89	98
	Min.	_27	Tή	42	40	40	28	28	27	30	34	33	36	41	40	48	40	27
Santa Cri	Avg. Max.	68,7	78.2	_76.3	77.2	76.4	63.6	59,8	60.6	63.8	63.4	66.2	63.8	69.2	74.7	7.67	75.8	68.6
	Avg. Min.	44.3.	49.1	7.64	47.1	47.9	40.4	42.2	39.4	38.5	41.5	44.8	43.3	48.1	50.4	52.6	48.5	44.8
	Avg.	56.5	7.54	63.0	62.2	62.2	52.0	51.0	50.0	51.2	52.5	55.5	56.6	58.7	62.6	66.2	62.2	56.7
PAJARO-SAN BENITO RIVERS	Max.	105	103	103	401	98	75	67	70	75	81	90	89	94	95	98	92	98
1	Min.	25	42	39	42	40	25	26	25	28	31	35	37	44	47	51	41	25
Giliny	Avg. Max.	72.9	88.4	88.3	83.2	82.2	63.1	59.4	58.5	64.0	65.6	68.8	76.6	76.1	85.3	88.4	80.7	72.4
	Avg. Min.	43.8	50.4	51.0	9.74	47.4	39.3	40*2	35.6	36.4	40.4	44.6	43.7	48.9	52.6	55.3	49.2	44.5
	Avg	58.4	69.4	0.7	65.4	64.8	51.2	49.8	47.1	50.2	53.0	56.7	60.2	62.5	69.0	71.9	65.0	58.5
	Max.	103	32	36	103	97	75	LT.	71	80	80	90	85	86	89	96	- 93	26
	Min.	23	43	43	40	40	25	26	23	27	33	34	34	40	42	45	39	23
Hollist':	Avg. Max.	W	80.5	. 81.7M	81.0	81.5	64.0	60.5	61.0	66.2	67.OM	69.7	71.7	69.6M	7.77	83.2	78.2	70.9
	Avg. Min.	W	49.1	46.8M	M	46.7	36.6	41.3	36.6	35.1	41.9M	45.2	41.7	47.0M	48.9	52.8	45.1	43.4
	Avg.	M	64.8	61.3M	W	64.1	51.3	50.9	48.8	50.7	54.5M	57.5	56.7	58.3M	63.3	68.0	61.7	57.2
	Max.	101	101	- 95	101	96	76	62	71	79	74	85	92	88	95	93	90	98
	Min.	18	35	34	32	33	18	20	18	20	23	. 27	.26	36	39	42	33	18
Quien Sabe - Hay Camp	Avg. Max.	68.3	85.6	83.1	79.9	78.8	59.7	52.6	54.2	61.8	60.8	66.1	70.8	73.7	84.5	86.1	77.9	68.9
	Avg. Min.	30.3	47.3	47.3	40.8	41.9	34.2	38.4	33.6	30.4	37.2	39.9	36.8	43.9	46.9	50.0	40.7	39.5
	Avg.	54.1	66.9	65.2	60.4	60.4	47.0	45.5	43.9	46.1	49.6	53.0	53.8	58.8	65.7	68.1	59.3	54.2

10

ιΩ -	DATA
-Α	RE
Ш	ATU
АB	PER
F	M
	F

						Tem	Temperature in Degrees Fahrenheit	n Degree	s Fahrenhe	4 t t								
		SEASON			1964							19	965					SEASON Oct. 1
STATION NAME		June 30	AJULY	AUG.	SEPT.	OCT.	• NON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	to Sept 30
							HYDE (Cent	COGRAPHI ral Coa	HYDROGRAPHIC AREA D (Central Coastal Area)	(a)								
PUTER AND SANTED PUTERS	Max.	97	83	80	91	57	72	67	76	75	80	85	75	75	75	92	83	76
CHURATU OTTANGO	Min.	280	45	643	07	1t	59	32	28	31	35.	35	36	42	48	617	11	a.
	Avg. Max.	65.7	70.0	70.3	71.6	73.7	63.3	59.7	60.0	62.2	62.1	65.2	1.99	64.5	68.4	73.4	70.0	65.7
Works	Avg. Min.	45.3	50.3	50.5	47.3	48.1	41.3	43.6	40.4	39.6	41.9	46.1	45.6	49.0	51.6	53.9	49.7	45.9
	Avg.	5° 5	60.2	60.4	59.5	60.9	52.3	51.7	50.2	50.9	52.0	55.7	55.9	56.8	60.0	63.7	19.3	5,5,4
I DWER SALINAS RIVER (D2)	Max.	97	76	94	89	90	78	65	78	82	78	88	88	84	102	102	6	1
INTATI OVUTION	Min.	23	42	36	31	34	28	28	23	29.	38	28	28	38	45	46	42	5
40 40 40 40 40 40 40 40 40 40 40 40 40 4	Avg. Max.	66.5	83.5	4.67	72.8	72.8	58.1	51.6	57.7	61.1	58.4	62.1	67.7	73.1	88.3	87.2	78.2	68.0
Frem nt reak State Park		47.7	60.8	57.6	48.2	52.4	41.3	43.0	42.5	42.1	43.5	48.0	45.8	47.2	60.2	60.7	56.1	46.6
	Avg.	57.1	72.2	68.5	60.5	62.6	49.7	47.3	50.1	51.6	51.0	55.1	56.8	60.1	74.3	74.0	67.2	58.3
	Max.	104	101	95	104	98	78	70	75	82	83	93	89	92	93	98	93	98
	Min.	70	77	M	40	39	25	24	25	24	32	33	35	40	44	46	39	24
Ktne Otte	Avg. Max.	W	W	83.6M	1	82.3	65.6M	62.5	62.5	67.8	67.8	72.1	MI.TT	77.0	81.9	84.8	80.0	73.5
CATA SUTA	Avg. Min.	W	×	M	46.3M		39.8M	42.9	38.6	35.8	39.9	43.8	M43.44M	48.4	51.3	53.7	47.0	44.3
	Avg.	W	×	W	65.0M	64.4	52.7M	52.7	50.6	51.8	53.9	58.0	60.3M	62.7	66.6	69.3	63.5	1.8.1
	Max.	95	84	81	95	91	68	67	73	73	76	81	73	74	72	83	84	16
	Min.	33	48	48	48	46	35	35	33	39	42	39.	42	46	46	50	48	33
Mont cross	Avg. Max.	62.9	66.3	66.3	69.3	70.8	61.4	58.5	59.7	59.9	59.4	62.1	59.5	62.0	64.2	70.0	69.2	63.1
A_ 124101	Avg. Min.	48.1	51.6	52.2	51.7	52.8	45.6	46.7	44.9	43.6	45.5	47.1	46.4	49.4	51.3	54.0	53.1	61.3
	Avg	55.6	6,9.0	59.3	60.5	61.8	53.5	52.6	52.3	51.8	52.5	54.6	53.0	55.7	57.8	62.0	61.2	51.7
	Max.	105	105	102	104	101	78	71	77	82	80	89	94	94	101	103	98	103
	Min.	00	42	42	38	38	21	24	20	24	30	27	29	38	τħ	43	38	20
Pinns & Nati n.1	Avg. Max.	76.1	95.5	95.1	89.2	86.1	63.4	5.63	62.0	67.0	65.5	67.8	79.2	82.9	94.1	94.7	85.5	75.7
Monument	Avg. Min.	41.2	50.8	50.2	44.44	45.9	35.5.	38.2	35.9	33.3	37.2	39.3	39.7	43.4	48.3	51.8	7.44	41.1
	Avg.	53.7	73.2	72.7	66.8	66.0	49.5	49.0	49.0	50.2	51.4	53.6	59.5	63.2	71.2	73.3	65.1	58.4
	Max.	103	103	101	66	96	76	67	75	73	74	84	91	91	99	103	94	103
	Min.	16	36	40	30	30	17	16	19	19	22	26	23	32	40	39	30.	16
Pris t. Valley	Avg. Max.	72.3	93.7	93.1	86.2	82.1	59.0	55.6	55.8	61.9	60.2	64.0	75.9	80.3	92.1	93.0.	52.1	71.8
	Avg. Min	37.6	0.64	0.64	38.7	40.7	32.1	34.1	32.9	28.7	32.2	36.4	.35.9	41.2	47.7	48.8	30.5	37.4
	Ave.	59 0	71.4	1.17	62.5	61.4	45.6	0.44	44.44	45.3	46.2	50.0	15.9	62.8	69.9	70.9	60.2	54.6

ю	DAT
Ā	JRE
μ	RATU
TAB	MPE
	ΤE

1

						Tel	Temperature in Degrees Fahrenheit	in Degree	s Fahrenh	cit								
STATION NAM		SEASON July J			1964								1965					SEASON Oct. 1
		to 'u	ALUL	AUG.	stirt.	ocr.	• NON	DEC.	JAN.	FEB.	MAR.	APR.	AAY	JUNE	JULY	AUG.	SEPT.	to Sept. 30
							HYDF (Cent	HYDROGRAPHIC AREA D (Central Coastal Area)	C AREA 1 stal Are	a)								
(70) MANTA CVILLAGE AND	Mux.	76	86	84	97	95	75	69	77	76	81	87	79	1 22	76	83	90	95
	Min.	27	4.7	45	37	39	29	32	27	29	35	32	38	45	50	50	44	27
1. 1.1. E	Avg. Max.	67.1	71.8	72.7	74.3	75.4	64.3	60.3	62.5	62.9	63.4	66.6	66.6	67.1	70.0	75.3	73.8	67.4
	Avg. Min.	46.2	52.0	53.1	49.4	49.7	41.1	44.1	40.3	38.2	42.5	45.9	47.1	51.3		54.6	51.1	46. ti
	Avg.	56.8	61.9	62.13	61.9	62.6	52.7	52.2	51.4	50.6	53.0	56.3	56.9	59.2	61.5	65.0	62.5	57.0
	Max.	96	87	85	98	97	73	62	.75	74	80	88	80	77	76	88	91	97
	Min	23	50	4.7	46	41	32	33	M	30	34	33	35	44		51	45	29
Although the Although the state of the state	Avg. Max.	00.00	13.4	72.2	73.7	75.8	63.6	61.7M	61.8M	62.1	62.0	66.0	65.2	66.1	69.0	73. J	73.9	66.0
	Avg. Min	46.7	43.8	53.9	51.5.	51.6	42.2	46.3M	40, 6M	37.7	41.8	44.7	46.1	9.94	52.5	55.5	12.4	46.8
	Avg	10.0	62.6	6.2.1.	62.6	63.7	52.9	54.OM	51.3M	49.9	51.9	55.4	55.7	58.0	60.8	64.7	63.2	56.
	Max.	93	77	74)	90	93	70	64	70	73	78.	W	M	W	W	W	W	M
	Min.	30	44	45	43	39.	32	34	30	30	35	M	М	M	M	M	M	М
L of Rit Duth -	Avg. Max.	W	63.0	63.0	66.5	70.5	61.4	55.3	57.3	60.5	60.8	М	M	M	M	M	M	М
	Avg. Min.	M	50.7	9.00	4.64	50.3	43.2	42.8	42.3	38.9	42.7	W	M	М	Μ	M	W	М
	Avr.	M	56.3	57.0	50.0	60.4	52.3	49.1	49.8	49.7	51.8	M	M	M	М	M	M	М
_1	Matt	1.6	30	66	100	96	75	68	77	79	81	84	- 62	79	78	92	91	96
_	Min.	27	46	146	49	39	27	29	27	28	33	33	37	42	44	47	40	27
· 1 04 01 * 10	Avg Max.	60.4	74.5	7°, 0	76.0	77.2	63.3	61.1	59.8	64.4	63.4	66.2	68.7	69.0	72.8	76.9	74.3	68,1
	Avg. Min.	"It a contraction of the contrac	51.4	52.5	56.6	52.8	39.8	43.0	39.1	36.5	40.4	43.5.	44.2	49.8	50.2	52.8	48.1	45.0
	Avg	1.14	1.2.8	63.14	66.3	65.0	: 1.6	52.1	49.5	50.5	51.9	54.9	56.5	59.4	61.5	64.3	61.5	5.6 . E
	Hav.	10_{i}	9	10.	W	95	75	68	82	78	73	87	- 62	78	75	83	30	95
	Mia.	27	44	44	Ø	43	29	0	30	53	27	34	40	42	41 1	42	40	27
	Avg. M	W	W	M	M	W	65.3	W	M	W	M	67.7	M	M	M	М	M	M
-1	Avg. M.n.	M	M	М	М	W	6.0E	M	M	M	M	44.3	W	M	M	M	М	M
	Avg.	М	M	M	М	W	1.0.	W	M	W	M	56.0	M	M	W	M	М	М
(cd) MEAL CONTRACT OF	Max.	105	105	104	100	30	0-1	74	73	76	80	90	94	94	102 1	.02	90	102
	Map.	24	46	40	40	44	24	24	24	- 14	30	30	32	40	46	50	42	24
· · · · · · · · · · · · · · · · · · ·		17	13.)	1+46		. 3.5	64.6	61.0	4.63	66.6	65.7	70.4	6.62	77.6	89.8	94.2	80.2	74.4
_	w. Mn	44.4	1.1	2.90	4.7.4	14.7	30.8	38.6	52.4	12.0	40.8	44.4	44.4	47.4		57.6	47.4	44.1
	-	1.2.2.	1.18	14.6	1. 1	the last	1.00	2.012	49.4	4.9.4	1 2.00	11.4	6.2	67.5	71.6	75.2	62.5	59.3

0-0

r0	DATA
TABLE A-	EMPERATURE
A B	MPE

						Tom	Tomoromotions (a. Boonerson Palbaradad)	a Baseroo	Cabacada .									
		CEAGON				4		100,000,000										CEAC/W
STATION NAME		July 1			1964							15	1965					SEASON Oct. 1
		to June 30	JULY	AUG.	SEPT.	ocr.	. VON	DEC.	JAN.	FEB.	MAR.	APR.	AAY	JUNE	JULY	AUG.	SEPT.	to Sept 30
							HYDR (Cent	OGRAPHI ral Coa	HYDROGRAPHIC AREA D Central Coastal Area)	a)								
UPPER SALINAS RIVER (D3)	Max.	104	LU4	102	76	94	74	66	68	75	76	86	93	92	100	001	50	100
	Min.	44	48	45	41	45	26	26	25	24	29	30	34			48	41	24
Linn Ranch	Avg. Max.	73.4	93.1	91.8	84.2	80.8	61.8	58.7	57.2	63.3	63.5	68.7	6.77	79.2	90.5	92.7	80.8	72.9
	Avg. Min.	43.9	55.1	54.6.	47.5	19.1	40.1	41.0	38.0	32.9	32.9	43.0	44.3	48.4	53.7	58.2	49.5	44.3
	Avg.	1.8.7	74.1	73.2	69	65.0	51.0	49.9	47.6	48.1	48.2	55.4	61.1	63.5	1.27	75.5	65.2	54.0
	Max.	106	106	105	104	100	79	76	73	bū	du	89	95	96, 1	103 1	104	100	104
	Min.	19	43	42	42	42	28	19	28	24	29	32	33	40	43	47	41	19
Nacimiento Dam	Avg. Max.	76.3	96.6	97.9	88.8	85.8	64.0	61.8	58.6	66.2	65.3	68.9	80.6	81.5	94.4	97.0	84.8	75.7
	Avg. Min.	43.2	52.1	2.12	47.0	48.5	.38.4	39.6	37.0	34.5	39.9	42.4	41.8	45.6	50.2	54.2	47.2	43.3
	Avp.	19.8	74.4	74.7	6.79	67.2	51.2	50.7	47.8	50.4	52.6	7.63	61	63.6	72.3	75.6	66. 1	59.1
	Max.	107	107	103	100	100	80	72	75	79	80	30	94	93 1	101 11	101	97.	101
	Min.	20	40	41	35	37	20	20	24	23	27	01	30	35	40	46	35	20
Paso Robles	Avg. Max.	75.9	94.8	93.5	.87.3	85.7	65.7	61.8	60.8	66.2	65.3	70.6	60.8	78.1	90.8M	94.8	83.7M	75.4
	Avg. Min.	41.6	50.0	49.3	42.6	44.44	35.5	39.5	37.2	32.4	39.6	42.6	41.2	45.1	48.4M	52.8	42.6M	41.8
	Avg.	58.8	72.4	71.4	65.0	65.1	50.6	50.7	49.0	49.3	52.5	56.6	61.0	61.6	69.6M	73.8	63.2M	5.8 . 6
	Max.	106	106	105	102	100	62	69	73.	78	80	91	96	94]	104 1	105	26	105
	Min.	22	917	44	39.	41	23	23.	23	22	28	29	34	38	42	48	39	22
Paso Robles FAA	Avg. Max.	75.8	96.1	94.2	86.9	84.5	64.3	60.1	59.3	65.5	66.0	72.1	81.1	79.5	92.5	96.4	83.5	75.4
2.4 date	Avg. Nin.	42.7	52.6	52.6	46.1	46.7	36.7	38.5	36.4	32.4	38.5	42.3	43.1	46.3	51.6	54.8	46.6	42,8
	Avg	. 50 . 3	74.4	73.4	66.5	65.6	50.5	49.3	6.74	49.0	52.3	57.2	62.1	62.9	72.1	75.6	65.1	59.1
	Max.	106	106	105	104	104	78	72	74	78	75	87	95,	94 1	105 . 1	03	96	105
	Min.	21	39	39	37	35.	22	22	21	24	9.F	28	25	34	41	40	38	21
San Antonio Mission	Avg. Max.	77.4	98.0	97.5	1.16	87.5	64.6	61.4	61.3	66.8	64.9	68.8	81.7	85.2	96.8	97.5	87.6	. 77 .0
	Avg. Min.	40.3	49.6	47.9	43.0	45.4	36.2	38.3	35.4	31.2	36.3	39.8	37.9	42.2	48.9	51.5	42.4	40.5
	Avg.	5613	73.0	72.7	67.1	66.5.	50.4	19.9	48.4	42.0	50.6	54.3	3.61	63.7	72.0.	74.5	65.0	54.8
	Max.	106	106	1.04	101	100	79	68	74	79	78	00	93	93 1	-	U3	96	105
	Min.	22	39	42	36	40	23	22	25	24	29	31	31.	38	42	46	48	22
Tempitin	Avg. Max.	- 73.7	93.1	91.1	84.5	83.6	63.5	59.5	59.3	64.8	63.5	69.3	76.6	76.0	85.2	32,1	80.4	72.8
	Avg. Min.	42.8	50.7	51.2	44.5	47.7	36.8	40.1	38.9	33.0	39.5	43.5.	41.9.	45.7	-	53.9	45.3	43.1
	Avg.	12.3	71.7		64.4	65.7	10.2	49.8	49.1	48.9	51.5	56.4	53.3	60.9	67.8	73.0	62.3	E 0

10	DATA
Ā	URE
В∟Е	RAT
TAE	MPE
	Ш

		SEASON			1964								1965					SEASON Oct. 1
JUNN NOTIVIC		to June 30	JULY	AUG.	SEPT.	OCT.	• NON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	ATOL	AUG.	SEPT.	to Sept. 30
							HYDF (Cent	OGRAPHI	HYDROGRAPHIC AREA D (Central Coastal Area)	(a)								
MONTEREY COAST (D4)	Max.	96	88	16	-18 1	-96	74	72	80	78	78	88	82	84	62	93	94	98
	Min.	25	F C	165	36	30	27	31	25	20	33	33	33	38	37	41	40	25
Carmel Valley	Avg. Max.	69.4	2.55	77.5	17.3	72.8	64.9	61.2	64.±M	64.4	63.0	66.8	68.1	70.0	73.4	79.5.	76.4	69.3
	Avg. Min.	4 2	47.6	47.0	47.0	48.2	39.55	42.5	Mc.26	37.1	40.3	42.6	40.5	6.14	46.2	49.7	46.4	43.2
	Avg.		61.5	62.3	62.2	64.0	52.1	51.9	52, 1M	50,8	7.64	54.7	54.3	58.0	59.8	64.6	61.4	56.3
	Max.	05	84	80	06	14	68	75	6	111	13	82	84	78	77	88	81	88
	Mín.	-8	5.0	52	50	60	42	40	81	45	44	40	44	45	51	52	- 53	38
Roosevelt Ranch	Avg. Max.	65.5	73.5	74.93	10	13.2	61.0	8.8	60.F	61.0	7.9.3	63.8	66.6	64.0	68.6	77.5	69.0	65.3
	Avg. Mín.	52.4	-57.9	-8.4	1.95	50.2	F0.1	0.0	47.49	5.00	-46.3	50.1	50.8	49.6	54.1	60.8	. 56.5	52.3
	Avg.	50.0	15.7	0012	6313	66.1	39.96	4.4	54.2	55.1	0.42	51.0	58.7	56.8	61.4	69.2	62.8	58.9
	Max.																	
	Min.																	
	Avg. Max.																	
	Avg. Min.																	
	Avg.																	
	Max.																	
	Min.																	
	Avg. Max.																	
	Avg. Min.								1									
	Avg.																	
	Max.								1									
	Mín.					1												
	Avg. Max.																	
	Avg. Min.	1				1												
	Avg.																	
	Max.					1												
	Min.																	
	Avg. Max.				1	1		1										
	Avg. Min.					1	1											
	Avg.																	

10 - 0

ю -	DATA
À	ш
	UR
Ш	AT
8	ER
A	۵.
F	Х
	Ē

3TATION NAME						THO:			PERPENDING IN DESTRICT A DIFFERENCE	110								
STATION NAME		SEASON										1	1965					SEASON
		July l			1964			1							V 111	Atte	CEDT	to to
		to June 30	AJUL	AUG.	SEPT.	ocr.	. NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE		-	- T- T- T-	Sent Jill
							HYDR (San F	OGRAPHI	HYDROGRAPHIC AREA E San Francisco Bay Area)	E (ea)								
Mark Contrast (1941) Mark	+	UUL	80	00	1001	69	72	65	63	73	77	88	84	92	85	25,	63	35
1001		807	45	17	42	43	31	30	28	33	37.	36	39	45.	44	-74	42	55
Kant Cital.	. Max.	69.5	83.3	82.8M	79.8	77.6	60.3M	58.1	55.5	61.3M	62.8M	66, 3M	73.5M 7	4.37	72.4 8	83. 2M 7	76. 2M	68.8
	Min.	45.6	1.13	51.5M	6	48.8	42.3	43.1	39.6	39.3M	42.5M	45.2M	44.8M 2	49.5	5	SM	WC . 74	45.5
Avg.		57.6	67.2		64.6	63.2	51.6M	5.0.6	47.6	50 . 3M	42°25	5.5, RM	50. 2M (51.0	64.7	68. 2M E	61. JM	
Max		101	bζ	100	104	96	70	64	64	72	24	90	6.2	88	×3	95	57	36
Min.		25	42	42	42	L17	25	26	26	30	34	33	-+		11	6		62
Petaluma Fire Avg.	, Max.	69.9	82.4	83.6	83.0	79.0	61.3	58.1	55.6	62.7	63.1	65.8	71.5M 5	72.5.	+	~	79.2	64.4
Station No. 7 Avg.	. Mîn.	44.8	50.1	50.4	0.64	48.2	41.5	43.0	39.8	37.5	40, 5	45.1	42.9M 1		5	~		45.1
Avg.		57.4	66.3	67.0	66. 0.	63.6	51.4	50.6	47.7	50.1	52.0	55.5	57.2M (61.6	65.4	68.7	64 5	17.3
Max		LOL	79	26	101	94	73	66	64	75	75	91	86	16	86	95	- 06-	101
Min.		00	47	48	42	146	33	34	29	36	38	39	33	47	4.2	49	40	50
Con Bread	e. Max.	0 12	83 4	83.4	82.5	79.5	61.5	58.9M	57.4M	65.0	64.7	68.0	73.7	73.9	79.2M	84.2M	7.77	70.3.
			55 5	52.7	51.4	52.0	44.3	44.9M	MO.IH	41.8	43.9	W	46. OM	50.1	51.3M	54. OM	50.2	W
AVE			68.0	68.1	67.0	65.8	52.9	51.9M	49.2M	53.4	54.3	W	M9.92	62.0	65.3M	69.1M	64.5	N
Max		IJOL	TOL	001	201	96	76	65	62	72	78.	93	68	93	90	60	95	66
Min.		170	42	64	39	36	24	24	25	30	31	30	36	42	42	44	34	24
Convenies	s. Max.	72.7	88.6	88.5	85.7M	81.0	60.8	58.0	54.9	64.9	65.4	68.6	78.1	77.6	87.5	87.9	82.0	72.2
	e. Min.	12 2	118 6	107	46.5	7.44	40.4	42.2	38.5	36.4	39.2	43.9	42.3	48.0	1	-	44.6	43.2
Ave		58.0	68.6	68.8	66.1M	62.9		50.1	46.7	50.7	52.3	56.3	+	62.8	-†		63.3	57.7
NAPA_SOLANO (E3) Max.		66	66	66	98	91	68	59	99	69	72	82	87	90	97	94	8	- 26
1		25	43	4.44	38	38	28	28	25	32	31	28	31	40	42	49	21	25
	e. Max.	67 7	8.7 B	88.0	ML.18	75.9	53.6	50.8	51.5	58.0	57.9	60.3	73.2	74.4	85.1	~	76.1	66.3
Union College Ave.			53.2	53.1	48.8M	50.2	39.2	40.2	39.2	39.4	39.6	42.9	45.6	46.5	51.9	54.6	48.0	
AVE.		56.3	70.5	70.6	65. OM	63.1	46.4	45.5	45.4	48.7	48.8	51.6	59.4	60.5	68.5	70.0	62,1	55.8
Max		107	107	104	105	- 26	73	63	68	71	77	94	68	89	76	95	94	26
Min.		22	10	42	37	33	22	22	22	26	29.	28	27	37	141	45	33	22
Ave.	g. Max.	71 8	1.20	91.5	86.0	79.9	58.9	54.3	55.7	62.3	62.5	66.6	76.8	75.4	88.0	89.3	82.2	71.0
	g. Min.		48.0	49.5	47.6	43.0	38.9	40.8	36.6	33.3	37.4	42.8	2	45.7				
Avg.	. S	56 2	70.1	70 B	GE B	61.5	48.9	47.6	46.2	47.8	50.0	54.7	58.3	60.6	67.8	60.8	63.3	50.4

ю	DATA
Ā	URE
μE	RATL
TAB	MPEI
•	Ē

						Tem	perature	in Degree	Temperature in Degrees Fahrenheit	eit								
STATION NAME		SEASON July 1			1964								1965					SEASON Oct. 1
		to June 30	ATOL	AUG.	SEPT.	OCT.	. VON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	to Sept 30
							HYDF (San F	rogRAPHI rancisc	HYDRCGRAPHIC AREA E San Francisco Bay Area	E E								
MAPA_SOLANO (E3)	Max.	105	305	104	102	32	65	67	64	69	86	88	93	96	98	97	94	96
I from I and a second second second	Min.	23	50	53	48	40	25	23	25	28	31	36	38	917	50	W	24	23
Denverton 1 South	Avg. Max.	73.3	6.03	91.2	86.4	81.6	58. 1	58.2	53.3	62.7	6.99	68.3	81.7	79.9	88.6	89.6	83.5	72.9
	Avg. Min.	46.5	56.3	57.4	53.1	50.3	39.6	40.5	36.9	35.8	41.6	47.5	48.2	50.3	54.4	57.9	50.2	46.1
	Avg.	59.3	73.1	74.3	69.8	66.0	49.3	49.44	45.1	49.3	54.3	57.9	65.0	65.1	71.5	73.8	66.9	59.5
	Max.	66	96	96	66	32	75	64	60	71	75	88	82	87	84	00	87	92
	Min	3	43	4.7	42	38	31	31	29	34	37	37	38	44	47	50	42	29
Duttons Landing	Avg. Max.	W	78, 6M	78.8M	80, 3M	77.6M	W	W	55.OM	61.4	62.3	64.6	71.3M	70.3	74.1	78.5M	73.9	М
	Avg. Min.	W	52.OM	53. 5M	50. OM	47.5M	W	M	39.5M	38.7	41.9	45.4	45.7M	49.8	50.8	54.6M	48.4	W
	Ave	М	65.3M	66.2M	65. 2M	62, 6M	W	W	47.3M	50.1	52,1	55.0	58.5M	60.1	62.5	66.6M	61.2	14
	Max	103	103	103	102	35	73	65	60	73	1.1	68	68	92	76	97.	92	57
	Min.	27	51	22	48	11	28	28	27	31	36	36	14	48	50	54	43	27
Fairfield Police	Avg. Max.	72.6	88.7	89.3	86.4	81.8	60.9	58.3	53.6	63.3	65.1	68.6	78.1	77.0	86.6	87.9	81.3	71.9
Station	Avg. Min.	47.7	55.8	56.3	53.4	50.4	42.2	43.5	40.1	39.3	43.0	47.1	49.1	51.9	54.3	57.8	51.3	47.5
	Avg	60.5	72.3	72.8	69.9	66.1	51.6	50.9	46.9	51.3	54.1	57.9	63.6	64.5	70.5	72.9	66.3	53.7
	Max.	66	95	95	96	e7.	72	69	65	69	76	90	85	91	89	91	86	93
	Min.	35	55	58	53	53	39	38	35	43	45	43	74	52	55	57	52	35
Mrre Island	Avg. Max.	69.7	82.0	82.8.	80.4	76.4	50.8	5.8.5	53.6	6.9	63.6	68.6	74.0	77.5	80,8	81.9	76.2	69.2
	Avg. Min.	52.8	- 59.6	60.9	59.2	57.6	46.4	48.6	44.2	45.5	46.5.	52.0	52.8	56.5	56.4	61.4	56.7	52.6
	Avg.	61.3	70.8	71.9	62.8	67.0	54.1	53.4	49.0	50.7	56.1	60.3	63.4	67.C	69.6	71.7	66.5	6.9
	Max.	104	101	90	104	25	78	65	62	74	78	91	c7 .	90	63	96	91	96
	Min.	59	46	49	42	40	50	53	50	32	34	33	37	43	45	50	017	29
Napa State Hospital	Avg. Max.	71.0	83.6	83,2	83.0	79.5	62.0	57.4	55.4	65.1	64.0	68.3	75.6	74.3	80,8	84.1	78.0	70.4
	Avg. Min.	45.9	52.9	53.4	1.64	48.3	42.9	43.5	39.4	38.7	40.7	46.1	45.7	49.1	50.5	54.6	48.3	45.7
	Avg.	r,8. r,	68.3	68.3	66.4	63.9	52.5	50.5	47.4	51.9	52.4	57.2	60.7	61.7	65.7	69.4	63.2	58.1
	Max.	106	105	105	106	98	78	66	65	74	82	91	90	93	100	98	95	100
	Min.	25	计计	45	07	38	26	25	25	30	31	30	36	44	43	47	37	25
Saint Helena	Avg. Max.	73.1	30.3	90.2	86.3	82.6	60.9	58.3	55.8	63.8	65.2	67.5	78.3	78.4	87.7	88.2	81.3	. 72.3
	Avg. Min.	44.5	51.8	51.9		46.3	40.6	42.1	37.8	36.0	39.7	44.6	43.9.	49.8	.50.6	53.5	46.4	44.3
	Avg.	58.2	71.1	71.1	67.6	64.5	51. M	50.2	46.8	49.9	52.5	56.1	61.1	64.1	69.2	70.1	63.9	58.3

10-0

						Tom	ornaturo	Tomnorsture in Decress Fahranhait	Fahranha									
CTATTON MARE		SEASON July 1			1964							19	1965					SEASON
TIMM NOTIVIC		to June 30	2017	AUG.	SEPT.	.TOO	• VON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	to Sept. 30
							HYDR (San F	HYDROGRAPHIC AREA E San Francisco Bay Area)	AREA Bay Ar	(Ea)								
NAPA-SOLANO (E3)	. XeM	105	105	100	100	92	76	99	62	68	76	76	54	96	94	4	44	1.
1 million V and a second second second second	.uiM	28	917	48	42	40	30	30	28	36	34	35	38	48	114	41	04	28
Veterans Home	Avg. Max.	72.6	90.2	88.0	83.4	77.8	61.2	58.4	54.8	61.1	66.6	69.3	79.2	81.5	85.7 8	85.7	79.5	71.7
	Avg. Min.	47.0	53.6	54.4	50.3	48.3	43.0	44.6	39.6	40.6	42.9	46.7	47.1	52.6	51.5	57.2	47.3.	46.8
	Avg.	53.8	71.10	71.2	66.9	63.1	52.1	51.5	47.2	50.9	54.8	58.0 (63.2	67.1	68.6 7	71.5	4 - 5	5 G 3
	Max.	101	99	96	101	- 93	79	65	60	69	75	38	86	93	69	96	93	ЭF
	Min.	22	38	38	34	31	22	23	25	26	29	28	30	38	38	43	26	25
Ycuntville G mble	Avg. Max.	70,0	83.9	83.5	81.7	82.5	58.7	57.7	54.2	6.1	62.5.	64.0	74.4	75.6 8	81. C 8	82.4	78.0	69.4
	Avg. Min.	41.5	47.0	46.1	43.0	41.8	40.9	42.1	37.8	35.5	38.4	40.3	39.5	46.1 1	46.6 4	49.6	6.14	41.7
	Avg.	55.8	65.5	64.8	62.4	62.2	49.8	49.9	46.0	48.3	50.5	52.2	57.0		00	66.5	-	55.6
EAST BAY (E4)	Max.	101	IOL	99	96	90	69	66	63	70	73	86	87	60	96	95	36	98
	Min.	27	46	42	43	40	27	32	59	30	35	33	36	43	43	11 T	41	27
Alame 1 North	Avg. Max.	70.1	87.5	86.8	80.7	77.3	58.4	57.4	53.0	58.7	63.1	67.8	75.1	75.8 8	84.7 8	85,8	78.8	69.7
	Avg. Min.	45.	52.1	54.3	49.4	48.4	40.4	42.9	37.7	37.1	40.2	45.0 1	45.2	49.2	51.3 5	53.6	46,2	45.C
	Avg	57.7	60.8	70.6	65.1	65.3	40.4	50.2	45.4	47.9	51.7	56.4	36 E	1.5	66. u E	6.8	69. 5.	57.4
	Max.	Tr.	82	85 28	Г.	84	69	62	63	69	73	83	74	77	72	85	£1	C.S.
	Min.	32	15	53	51	50	38	37	32	53	11	39	13	41	43	3	46	37
Berkeley	Avg. Max.	63.4	69.3	64.5	71.0	69.8	58.9	55. OM	55.5	59 6	59.8	61.8 6	65.0	63.7	66.7.7	70.5	67-8	62.5
	Avg. Min.	49.1	53.8	55.4	55.0	53.6	46.3	46.6M	43.0	43.9	45.7	48.6 1	47.9M	49.5	51.0 5	55.4	52.4	48.7
	Avg	56.3	61.5	62.5	63.0	61.7	52.6	51.3M	49.3	51.8	52.8	55, 2	56. 5M	56.6	c.8.9 6	63. Ú		Q. 12
	Max.	100	100	97	- 66	93	71	66	59	69	77	91	85	91.	50.	95	69	95
	Min.	30	50	53	48	24	33	34	30	33	39	38	42	48	51	52	46	30.
Grockett	Avg. Max.	69.6	84.5	84.1	80.4	77.8	59.9	58.4	53.3	60.4M	63.8	65.5M	74.1	73.2 8	80.9 8	85.0	77.3	69.1
	Avg. Min.	48.3	54.4	56.2	54.4	53.0	44.6	45.2	40.4	39.8M	44.1	47.4M	48.3	51.9	53.6 5	57	52.9	48.0
	Avg.	59.0	62.5	70.2	67.4	65.4	52.3	51.8	46.9	50.1M	54.0	56.5M (61.2	62.6 (67.3 7	71.0	65.1	5 . T
	Max.	102	102	100	102	93	73	66	66	72	76	92	22	91.	26	95	Jul.	200
	Min.	28	49	52	48	45	30	31	28	33.	38.	37	1 T T	44	50	52	4C	ЭR
Martinez Fire	Avg. Max.	70.5	86.6	86.7	82.2	78.3	59.3	57.8	- +	61.8M	63.9 6		75.3 7	73. C	82.2	85.5	76.9	69.6
Staticn	Avg. Min.	47.3	55.0	55.7	52.8	50.9	41.2	43.9	39.8	38.8M	43.1 /	46.9	47.7	51.4	53.6.	57.3	50.7	47.1
	Avg.	58.11	Tr. 8	71.2	67.5	64.6	70.3	50.0	47.7	50.3M	53.5	0.72	61.5 6	62.3	67.9	71.4 1	63.8	58.4

						Tem	perature	Temperature in Degrees Fahrenheit	s Fahrenh	eit								
STATION NAME		SEASON July 1			1964								1965					SEASON Oct. 1
		to June 30	JULY	AUG.	SEPT.	OCT.	. NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	to Sept. 30
							HYDR (San F	HYDROGRAPHIC AREA E San Francisco Bay Area)	C AREA E Bay Ar	ea)								
EAST BAY (E4)	Max.	104	104	100	001	96	74	69	۲7	73	74	83	88	10	001	ao	60	100
	Min.	28	45	46	44	43	31	28	28	36	32	32	34	11	46	20	L 77	28
Mount Diablo	Avg. Max.	69.2	87.9	88.9	81.5	79.8	57.1	53.2	53.3	61.2	58.8	61.0	73.2M	74.6	88.4	89.0	78.2	69
North Gate	Avg. Min.	47.7	58.8	59.0		55.8	41.0	41.5	40.8	41.7	40.9	44.5	MI.T4	47.0	57.8	60.2	52.9M	
	Avg.	58.5	73.4	74.0	68.1	67.8	49.1	47.4	47.1	51.5	49.9	52.8	60.2M	60.8	73.1	74.6	65.6M	58.3
	Max.	94	87	87	94	87	72	63	63	72	75	88	76	80	73	88	87	39
	Min.	36	53	55	54	48	L4	04	36	42	710	42	47	51	51	55	50	36
Oakland City Hall	Avg. Max.	63.8	68.9	70.1	72.3	72.0	59.2	56.2	53.6	60.4	59.9	62.3	65.7	65.1	67.9	72.4	70.6	63.8
	Avg. Min.	52.3	55.9	57.7	58,1	57.2	49.7	49.6	45.8	47.2	50.0	51.4	51.4	53.7	55.8	59.2	56.9	52.3
	Avg.	56.1	62.4	63.9	65.2	64.6	54.5	52.9	49.7	53.8	55.0	56.9	58.6	59.4	61.9	65.8	63.8	58.1
	Max.	36	93	90.	- 96	16	12 .	63	67	74	77	63	84	85	85	16	89	16
	Min.	31	20	50	44	45	32	35	31	38	40	36	39	45	47	51	49	31
Oskland 39th	Avg. Max.	67.5	77.3	77.9	76.0	75.8	60.7	56.3	56.2	61.8	62.1	65.5	70.8	69.8	75.2	78,8	74.6	67.3
Avenue	Avg. Min.	47.1	52.6	53.0	51.5	50.7	42.4	44.5	42.1	42.2	44.6	46.8	45.9	49.0	50.4	53.7	53.6	47.2
	Avg.	57.3	65.0	65.5	63.8	63.3	51.6	50.4	49.2	52.0	53.4	56.2	58.4	59.4	62.8	66.3	64.1	57.3
	Max.	89	84	83	89	85	67	62	64	65	72	79.	73	76	75	87	86	87
	Min.	35	53	55	53	49	37	38	35	38	43	39	45	51	53	57	617	35
Oakland WB	Avg. Max.	63.4	68.3	70.1	71.6	70.7	59.3	56.4	54.4	58.5	59.9	61.5	64.6	65.6	68.0	71.7	70.6	63.4
Airport	Avg. Min.	51.2	56.1	57.8	56.6	55.2	47.5.	48,2	44.2	44.5	48.3	50.8	50.9	54.1	56.7	60.1	56.7	51.4
	Avg.	57.3	62.2	64.0	64.1	63.0	53.4	52.3	49.3	51.5	54.1	56.2	57.8	59.9	62.4	65.9	63.7	57.4
	Max.	104	104	100	99	92	69	65	62	11	75	88	88	. 91	95	96	- 92	96
	Min.	25	49	48	45.	33	28	29	25	32	33	35	38	45	45	50	40	25
Port Chicago	Avg. Max.	. 70.8	87.5	87.2	82.7	79.2	59.6	57.9	53.5	60.2	63.2	66.8	76.0	76.0	83.7	86.9	78.4	70.1
Naval Depot	Avg. Min.	45.0	53.5	53.8.	50.5.	48.7	40.4	41.8	37.3.	36.1	38.5	44.44	44.7	49.7	52.5	54.8	48.2	44,8
	Avg.	57.9	70.5	70.5	66.6	64.0	50.0	49.9	45.4	48.2	50.9	55.6	60.4	62.9	68,1	70.9	63.3	57.5
	Max.	95	85	84	95	90	71	67	66	72	76	88	77	76	75	90	85	90
	Min.	32	51	54	52	48	36	37.	32	37	42	39	46	48	51	54	48	32
Richmond	Avg. Max.	65.1	68,8	69.9		73.4	60.6	58.3	57,1	61.3	62.7	64.3	67.2	64.9	67.5	72.0	70.0	64.9
	Avg. Min.	49.9	54.7	56.8	8	54.0	46.2	47.6	42.1	43.3	46.5	49.6	50.3	52.3	54.2	57.6	54.2	49.8
	Avg.	57.5	61.8	63.4	64.4	63.7	53.4	53.0	49.6	52.3	54.6	57.0	58.8	58.6	60.9	64.8	62.1	57.4

TABLE A-3

						Temp	Temperature in Degrees Fahrenheit	n Oegrees	s Fahrenh	eit								
		SEASON			1964							19	1965					SEASON Oct. 1
STATION NAME		July I to June 30	JULY	AUG.	SEPT.	0CT.	. VON	DEC.	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY /	AUG. S	SEPT.	to Sept 30
							HYDR (San F	HYDROGRAPHIC AREA E San Francisco Bay Area)	7 AREA 5 Bay Ar	E ea)								
	Mac	-0-	- UV -	00	90	00	69	63	57	70	73	86	85	90	96	95	28	96
EAST BAY (E4)	Min.	101	57	44	Ett	38	25	27	53	26	31	30	33	11	45	617	37	23
	Ave. Max.	C BY	82 0	AC A	70.0	5 LL	57.1	54.2	52.2	60.4	62.7	64.7	72.3	70.1	81.1 8	82.2	75.6	67.5
Saint Marys College						47.3	38.3		36.7	33.5	36.9	43.8	43.7			54.3	40.4	43.9
	Avg.	20.95		68.0	64.3	62.3	47.7	47.8	44.5	47.0	49.8	54.3	58.0	59.5	66.7 6	68.3	62.5	55.7
	Max.	96		00	96	88	73	63	66	73	77	87	77	83	77	EE.	85	88
	Min.	5	05	15	45	48	35	35	31	36	38	36	39	45	917	53	47	31
Innew S n Leandro	Avg. Max.	×	73.3	74.3	73.9	74.1	60.7	56.5	56.2	W	60.7	63.5	M	_	68.8 7	74.7	71.6	W
Filters		2			53.0	52.9	144.1	44.8	41.2	40.7	42.7	45.4	45. OM	48.7	50.7	54.6	51.4	W
	Avg.	: >	62.9	64.1	63.5	63.5	52.4	50.7	48.7	M	51.7	54.5	×	57.6	59.8 6	64.7	61.5	W
	Max.	20 L	103	LOL	66	93	71	67	62	72	77	89	90	92	98	95	91	96
	Min.	- The	45	45	110	017	24	27	25	28	32	32	32	41	45	50	38	54
	Ave. Max.	5 L2	87 5	88.1	82.6	7.97	59.6	58.3	54.1	61.3	64.2	68.5	77.0	74.9	84.7	86.7	78.6	7.6
2 ESE			1 C2	62.6	47.6	46.3	38.6	41.6	36.9	34.1	39.4	44.6	42.2	48.8		5.8	45.8	43.6
	Ave.	57.6	70.07	70.4	65.1	63.0	49.1	50°C	45.5	47.7	51.8	56.6	59.6	61.9	68.4	7c.8	62.2	51.0
ATAWEDA ABEEV (EC)	Max.	001	COL	101	100	95	81	99	65	72	74	86	88	91	98	98	94	1
Vegauo	Min.	54	45	111	36	36	24	26	28	27	31	30	32	40	44	48	38	24
T discontration Contractor	Avg. Max.	71 8	86.5	86.7	83.4	81.0	62.9	58.5	56.3	61.2	63.3	67.4	76.0	75.0		88.2	7.97	71.6
Plant			52.6	51.7	47.5	46.2	38.2	40.0	37.1	34.2	40.2	42.3	42.4	48.5	51.9	53.9	47.4	43.5
	Avg	57.6	69.69	69.2	65.5	63.6	52.1	49.3	46.7	47.7	51.8	54.9	59.0	61.8	69.1	21.2	62.6	9 35
	Max.	105	105	104	100	96	71	99	64	11	73	87	92	55	100	65	94	100
	Min.	26	42	43	44	110	23	30	26	30	33	32	33	L 17	45	64	C 17	. 26
Livermore 2 SSW	Avg. Max.	513	88.9	88.6	83.0	81.4	59.8	57.2	55.0	59.4	61.6	66.5	L - 77	77.4.	86.5	88.2	81 4	71. 0
	Avg. Min.		50.4	52.1	49.9	49.1	39.8	42.5	37.0	35.9	40.4	43.8	42.2	48.0	51.1	54.6	48.2	44.4.
	Avg.	57.8	69.7	70.4	66.5	65.3	49.8	49.9	46.0	47.7	51.0	55.2	59.7	62.7	68.8	4.17	64.5	57.7
	Max.	80	89	88	68	85	63	56	67	65	63	74	76	80	87	85	79	29
	Min.	17	38	38	38	39	54	M	17	29	31	24	27	35	44	50	38	17
Warnt Warn1 ton	Avg. Max.	60 5	78.3M	78.0M	72.0M	70.6M	47.9M	46.1M	49.0M	52.2M	49.2M		62.9M 6	68.3M	77.3M 7	77.4M	68. IM	60.1
	Avg. Min.	45.8	60.9M	62.0M	54.4M	56.0M	35.4M	37.0M	37.9M	38.5M		38.9M	45.4M 4	47.0M		1	53.7M	45.7
	Avg.	53.2	69.6M	70.0M	63.2M	63.3M	41.7M	41,6M	43.5M	45,4M	42. 8M	45.4M	54, 2M F	57.7M	68, 5M (69.7M	E. M.	2

ņ	DATA
-A-	JRE
Ē	RATURI
TAB	Б
-	TEM

						Tem	oeratui e	Temperature in Degrees Fuhrenheit	s Fahrenb	tett								
CTARTON MAME		SEASON Julv I			1964								1965					SEASON Oct. 1
*HAN1 NOT TOTO		June 30	ATIOL	AUG.	• Leisis	ocr.	• NON	DEC.	.NAL	FEB.	MAR.	APR.	MAY	JUNE	AUUL	AUG.	SEPT.	Sept 31
							HYDR (San F	HYDROGRAFHIC AREA E San Francisco Bay Area)	C AREA o Bay Ar	Ŕ, ea)								
ALAMEDA CREEK (EL)	Max.	46	26	92	46	2.3	17	1.2.3	63	27	14.	84	2.1	2-4	6.4	3	6.41	-
	MIN	60	55	16	015	03	130	36	21)	1.2	42	Be	17 17	.05	51	115	11 4	
Newar Ic	Avp. Mitx.	£	75.5	76.2M	76. OM	74.6M	M	58. GM	56.2	59.6	61.7	64.0	67.9	69.0	72,9	76.5	.12.6	Σ
	Avg. MD	M	57.0	58.1M	55.8M	54.9	W	46.7M	42.0	43.1	46.6	49.4	7.64	53.6	5001	58.8	54.8	M
	Avg.	M	6.00	F.7.2M	60.9M	64,8M	M	52,8M	49.1	4.10	54.2	56.7	-58.8	64.3	64.2	1.7.1	1.5	£
	Max	104	104	103	101	98	72	66	62	78	37.	86	90	32	98	98	10	10
	Mio.	54	44	1.17	43	38	24	27	26	28	32	32	- 36	42	46	48	38	24
Fleasanton Nursery	Avg. Max.	71.6	88.9	88.7	83.9	81.7	59.5	56.5	54.6	62.5	63.2	66,6	76.2	76.7	87.8	87.8	80.4	71.1
	Avg. Min.	0.04	51.5	51.6	48.3	48.0	40.6.	44.3	39.2	36.2	2.14	45.6	43.3	49.8	52.3	54.4	47.3	45.2
	Avg.	58.3	70.2	70.2	66.1	64.9	50.1	50.4	46.9	49.4	52.4	56.1	59.8	. 63.3	70.1	71.1	63.9	1. 1. 1. 1.
JANTA CLARA VALLEY (Et)	Mux.	101	20	101	99	92	70	70	63	12	75	88	85	87	96	92	16	92
	Min.	28	517	4.8	11.11	24	28	29	28	31	34	33	30	61/	46	15	511	28
Alamitos Fere.	Avy, Mux.	70.0	82.9	81.5	81.4	77.8	61.3	58.6	56.6	61.4	64.0	1.99	73.6	73.7	80.5	81.4	2.1.2	69.4
Fond	Avg. Min.	46.5	53.9	54.1	51.8	50.4	7.14	7.44	39.5	39.0	41.6	45.8	45.8	49.9	53.0	58.2	50.7	46.7
	Avg.	58.3	68.4	67.8	66.6	64,1	51.5	51.7	48.1		52.8	26.3	59.7	61.8	66, 8	6.00	0.11.1	58.1
	Mnx.	103	103	100	102	26	41	66	69	73	78	85	89	92	98	1.6	30	38
	MIn.	25	39	L 17	- 36	39	22	22	23	26	32	30	35	117	54	41,	02	22
Coyote Reservoir	Avg. Mar-	70.7.	6.93	21. 15	82.1	79.8	59.9.	5.02	57.1	61.3.	64.50	64.5	13.7	74.7	86.5	87.5	7.67	70.4
	Avg. Min	41.7	48.41	48.1	44.5	45,4	35.8	39.4	51 . 2	35.1	38.6	41.1	41.6	45.2	48.1	5.16	41,2	42.0
	Avy.	56. :	68.2	61.5	63.5	62.6	6.74	48.0	46.8	48.2	50.6	53.6	57.7	60.0	67.3	10.63	62.5	51.2
	Max.	101	101	100	101	94	73	68	69	73	15	85	86	16	99.	95	90	99
	Min.	24	017	017	38	39	25	2.7	54	27	31	29	30	35	39	5 17		
Lexington Reservoir	Avg. Max.	6.9	86.7	84,8	81.6	78.3	59.5	56.6	56.0	60.7	61.7	6.4.9	73.9	74.5	85.8	86. E	79.1	69.8
	Avg. Min	41.9	48.9	48.7	47.3	46.4	37.3	39.7	36.4	35.0	38.0	41.2	39.8	43.9	50.9	I ton	44.1	41.9
	Avg.	6.36	11,8	66. W	64.4	62.4	48.4	48.2	46.2	47.8	49.9	53.1	56.8	59.2	68.4	6.73	61.6	6.30
	Max.	66	66	98	98	92	0/2	68	()te	72	W	88	85	89	92	93	67	33
	Mín.	27	46.	11	17.17	43	29	31	27	31	37	G 6	37	43	44	05	111	27
Los Oatos	AVR. Max.	رئ. 70	83.5	83.7	81.2	78.6	60.5	58.5	57.8	6.23	63.2M	6.6.9	74.6	74.9.	82.2	83.4	78.0	+
	Avg. Min.	46.1	53.C	53.4	50.3	19.5	41.7	44.1	39.8	39.2	42. IM	45.3	4.5.5	48.6		55.8		-
	AVB.	58.3	68,6		6.5.8	(54.1	1.1.	51.3	48.8	6,0,*1	6,2 ° 7 M	56.1	60.1	61.8	9.10	69.6	64.2	58.2

						Ten	ocrature	u Degree	Temperature in Degrees Fahrenheit	sít								
ADMARK ALCONOMIC		SEASON Tu to 1			1964								1965					SEASON Oct. 1
THAT NOT INTE		June 30	XINC	AUG.	SEPT.	ocr.	NOV.	UEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	AULT	AUG.	SEPT.	sept 30
							HYDR (San F	OGRAPHI rancisc	HYDROGRAPHIC AREA E San Francisco Bay Area)	E ea)			_					
SANTA CLARA VALLEY (E6)	Max.	95	56	63	46	88	69	67	65	02	75	85	81	86	79	16	85	16
7	Mín.	26	45	47	44	40	28	29	26	30	35	34	41	45	48	51	41	26
Palo Alto City Hall	Avg Max	67.0	76.8M	77.6	77.2	73.9	58.2	57.4M	55.6	60.0	61.6	65.1M	70.0	71.1	72.EM	77.5M	72.4	66.3
	Avg. Min.	46.2	54.7M	54.4	49.2	48.0	40.9	42,6M	39.5	39.2	42.0	47. CM	45.9	50.9	54.4M	56.9	51.2	46.6
	Avg.	56.6	65.8M	66.0	63.2	61.0	49.6	50.0M	47.6	49.6	51.8	56.4M	58.0	61.0	63.5M	F7.2M	61.9	55.4
	Max	66	98	98	66	90	72	73	67	74	.83	90	87	95	87	94	90	25
	Min.	28	45	48	45	42	30	31	28	31	36	36	40	44	46	52	421	28
Redwood City	Avg. Max.	71.6	83.6	84.3	82.8	77.8	62.4	59.9	58.5	63.0	61.9	69.3	75.9	76.7	81.0	84.5	78.5	71.0
	Avg. Min.	46.0	52.4	53.6	49.9	49.6	42.1	45.1	40.6	40.3	42.9	46.7	45.7	50.1.	53.4	55.9	49.5	46.8
	Avg.	59.1	68.0	69.0	66.4	63.7	52.3	52.5	40.6	51.7	53.9	58.0	60.8	63.4	67.0	70.2	64.0	5P. 4
	Max.	98	94	98	98	90	69	68	64	72	77	83	85	88	68	92	60	92
	Min.	27	48	52	46	43	29	82	27	32	36	35	39.	46	49	50	45,	27
San Jose	Avg Max.	70.1	4.67	80,8	80.3M	4.77	61.3	59.3	57.7	62.3	65.2	68.5	73.7.	75.8	86.3	82.2	77.2	70.1
	Avg. Min	47.7	55.1	55, 8.	54 OM	50.2	42.4	44.7	40.7	L.04	43-9.	-47.0	47.3	51.7	54.8	57.E.	1.00-	47.8
	Avg	58.9	67.3	68.3	67.2M	63.8	51,9	52.0	49.2	51.2	54.6	57.8	60.5	63.8	67.1	70.0	64.9	58.14
	Max.	98	46	94	98	93	72	68	67	72	80	91	87	91	66	94	93	94
	Min.	32	48	48	46	45	32	35	32	34	39	38	41	46	50	53	46	32
San Jose Deciduous	Avg. Max.	W	79.9	79.4	X	79.6	63.5	60.6	58.8	63.5	66.0	67.0	76.0	76.1	80.9	80.4	78.9	70.9
F. F. S.	Avg. Min.	141	55.1	55.1	M	52.3	45.0	48.0	42.5	41.1	45.0	50.0	48.0	52.2	55.5	58.1	53.5	49.3
	Avg.	M	67.5	67.3	W	66.0	54.3	54.3	50.7	52.3	55.0	58.0	6.2.0	64.2	68.2	69.3	66.2	60.1
	Max.	96	92	36	96	90	70	69	W	74	62	88	85	89	88	33	W	- 93
	Min.	29	48	50	47	45	31	31	29	35	39	36	42	46	49	53	M	29
Santa Clara	Avg. Max.	70.9	81.7M	84.5	81.3M	0.77	62.4	60.1	59.6M	62.8	64.7	67.9	73.8	74.5	78.8	80.9M	W	W
University	Avg. Min.	47.9	53. BM	57.3	52. 6M	51.8.	41.8	44.5	40,4M	41.1	44.9	47.6	1-24	51.2	54.5	57.3M	W	W
	Avg.	59.4	67.8M	70.9	67.0M	64.4	52.1	52.3	50.0M	52.0	54.8	57.8	60.8	62.9	66.7	69.1M	M	W
BAYSIDE-SAN MATEO (E7)	Max.	95	95	94	95	84	17	69	66	68	77	88	82	82	81	88	85	86
	Mín.	29	911	47	44	43	32	33.	29	34	38	38	42	45.	45	48	36	29
Burlingame	Avg. Max.	68.6	78.0	78.8	78.4	74.1	60.5	58.7	55.9	62.6	64.6	67.4	70.5	73.1	75.1	78.9	76.2	68.1
	Avg. Min.	46.9	52.3	51.9	49.3	49.9	44.6	46.2	41.0	41.3	43.9	46,4	45.9	50.E	50.8M	53.7	48.0	46.9
	Avg.	57.8	65.2	65.4	63.9	62.0	52.6	52.5	48.5	52.0	54.3	56.9	58.2	61.9	63.0M	66.3	62.1	57.

ю	DAT
-A-	URE
BLE	ERAT
ΤA	EMPE
	⊢

1

						Ten	Temperature in Degreces Fahrenheit	in Degree	s Fahrenh	eit								
STATION NAME		SEASON July I			1964								1965					SEASON Oct. 1
TINNI NOTTAVTO		June 30	ATUL	AUG.	SEPT.	OCT.	. VON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	to Sept 30
							(San F	HYDROGRAPHIC AREA E San Francia∞ Bay Area)	C AREA D Bay Ar	E ea)								
BAYSTDE_SAN MATEO (E7)	Max.	92	16	89	92	85	69	64	62	68	74	83	78	80	27	85	83	85
	Min.	31	51	52	48	46	35	36	31	37	39	39	L4	47	48	52	77	31
San Francisco	Avg. Max.	63,8	71.6	73.1	73.2	70.2	57.9	56.2	54.6	58,2	59.4	61.4	64.0	65.9	68.3	71.3	70.2	63.1
WB AP	Avg. Min.	48.5	54.5	55.4	53.7	51.5	45.3	46.3	42.3	42.5	45.2	47.6	46.5	50.7	52.3	55.3	51.9	48,1
	Avg.	56.2	63.1	64.3	63.5	60.9	51.6	51.3	42.5	50,4	52.3	54.5	55.3	58.3	60.3	63.3	61.1	55.6
	Max.	92	81	80	92	86	74	65	62	73	75	85	74	74	69	81	84	92
	M1n.	μÜ	50	52	50	50	777	40	40	42	46	43	917	61	48	52	52	40
San Francisco	Avg. Max.	62,1	64.6	65.5	69.0	70.7	60.2	57.3	55.9	59.9	59.5	61.0	60.7	60.7	61.9	66.5	6.99	61.8
Federal Office	Avg. Min.	51.2	53.1	54.5	55.8	55.4	50.4	50.0	46.9	48.1	49.3	50.3	19.0	51.6	52.9	55.9	55.4	51.3
Suinting	Avg.	56. 1	58.9	60.0	62.4	63.1	55.3	53.7	51.4	54.0	54.4	55.7	54.9	56.2	57.4	61.2	61.2	56.6
	Max.	16	46	16	96	88	73	68	63	72	77	87	80	85	80	68	85	68
	Min.	74	50	52	445	747	36	36	34	. 37	42	40	43	48	50	52	46	34
San Mateo	Avg. Max.	66.8	75.8M	76.3M	76.3	74.6M	60.5	58.1	56.9M	61.1	61.6	65.0	67.3M	68.4	72.7M	76.8	73.5	66.4
	Avg. Min.	51,1	57.9	58, OM	54.6	53. 5M	46.3M	48.1	44.5M	44.7	48.5	50.8	51.8M	54.3	55.8M	58.3	55.8	51.0
	Avg.	59.0	66.9M	67.2M	65.4	64.1M	53.4M	53.1	50.7M	52.9	55.1	57.9	59.6M	61.4	64.3M	67.6	64.7	58.7
COAST-SAN MATEO (E8)	Max.	86	72	69	84	86	69	62	67	64	68	72	68	70	70	84	74	86
	Min.	32	46	48	46	44	35.	38	32	37	39	37	38	41	44	50	42	32
Half Moon Bay	Avg. Max.	-61.3	64 4	66. OM	66.2	66.2	59.8	56.8.	58.5	57.2	58.8	60,4	61.2	60.6M	62.1	67.0	64.7	61.1
	Avg. Min.	47.4	51.8	52.3M	50.9	50.0	46.5	46.0	44.3	41.5	44.3	46.5	46.3	48,9M	49.8	53.7	52.6	47.5
	Avg.	54.4	58.1	59.2M	58.6	58.3	53.2	51.4	51.4	49.4	51.6	53.5	53.8	54.8M	56.0	60.4	58.7	54.3
	Max.	90	68	69	90	84	74	62	65	68	75	66	62	62	72	72	81	84
	Min.	34	46	617	47	45	34	38	40	37	40	38	017	36	747	50	48	34
San Franciaco	Avg. Max.	60.6	62.1	64.8	67.3	66.7	59.9.	56.8	56.6	57.8	59.2	59.1	57.3	59.1	61.3	63.6	64.7	60.2
Richmond Sunset	Avg. Min.	48.9	52.3	55.0	55.3	52.5	45.1	47.9	45.9M	44.3.	45.9	47.6	47.2	47.8	52.7.	54.7	55.0	48.9
	Avg.	54.8	57.2	59.9	61.3	59.6	52.5	52.4	51.3M	51.1	52.6	53.4	52.3	53.5	57.0	59.2	59.9	54.6
	Max.	95	83	83	89	95	71	63	- 73	69	72	78	68	74	75	87.	85	95
	Min.	29	40	14.1	39	36	59	33	31	31	35.	35	34	37	42	11 11	35	29
San Gregorio 3 SE	Avg. Max.	63.7	68.2	69.6	71.1M	71.0	61.5	57.5	59.9	59.5	59.4	61.0	61.3	63.8	67.3	71.OM	70.3	63.6
	Avg. Min.	45.0	49.6	49.4	48,4M	47.6	41.8	45.0	42.0	38.4	42.5	44.5	43.4	47.4	49.0	51.1M	48.2	45.1
	Avg.	54.4	58.9	59.5	59. BM	59.3	51.7	51.3	51.0	110.0	51.0	52.8	52.4	55.6	58.2	61.1M	59.3	54.4

5-0

ņ	DATA
-A	URE
Ш	RAT
A B	PER
F	EMI
	Ē

						Tor	and at the	Tomocratics (a Ducress Fahrenheit	a Fahranh	oft								
		1000						0										SEASON
CTATION MAME		SEASON July 1			1964								1965					Oct. 1
TIM NOTIFIC		to June 30	AULT	AUG.	SEPT.	ocr.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	sert.	to Sept 30
							I N (N · I	HYDROGRAPHIC AREA F (Nerth Coastal Area)	C AREA F tal Area									
1	Max.	106	106	106	106	100	78	66	78	80	85	92	W	96	98	100	94	100
MENDOCINO COAST (FU)	Min.	24	14	64	38	32	24	24	26	28	31	32	W	07	11	45	33	th 3
SMM allivnood	Avg. Max.	W	W	88.6	88.2	M	W	59.0	61.7	W	65,8	67.1	W	76.5	88.2	86.2	W	М
CHIL STTANC	Avg. Min	W	W	46.5	43.0	W	M	39.9	39,8	W	40.7	44,3	W	46.0	48.4	51.6	W	W
	Avg.	W	M	67.6	65.6	W	М	49.5	50.8	M	43.3	55.7	Ξ	61.3	68.3	68.9	W	W
	Max.	81	68	73	81	77	69	60	64	68	70	69	61	65	72	17	74	77
	Min.	31	44	45	41	39	31	33	32	32	36	38	38	42	45	49	11	31
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Avg. Max.	5,9,8	63.5	65.2	64.6	64.1	59.6	55.1	54.6	54.9	58.8	58.5	58.4	59.7	61.5	65.4	63.2	59.5
230-10-3-70-4	Avg. Min.	45.0	1.94	50.0	47.4	47.9	43.2	43.8	41.0	38.1	42.8	45.2	43.5M	47.4	49.1	52.1	47.8	45.2
	Avg.	50.4	56.3	57.6	56.0	56.0	51.4	49.5	47.8	46.5	50.8	51.9	51.0M	53.6	55.3	58.8	55.5	52.4
	Max.	76	68	71	76	74	68	60	61	67	69	66	60	M	69	72	52	52
	Min.	5	39	42	38	39	29	30	31	31	32	34	37	W	M	W	36	59
Dowt Dwords	Avg. Max.	W	63. 5M	Mp. 49	64.2	63.7M	58.9M	55.0M	55. 2M	55.3	58. OM	56.7M	57.8M	M	59.9M	65.6M	62.2	W
Avlation.		W		47.8M	44.6	46.7M	40.8M	43.3M	MO.14	37.3	40.3M	44.3M	42.4M	M	47.5M	50.1M	44.9	W
	Avg.	W	Mc Sa	56.4M	64.4	55. 2M	M9.9M	47, 2M	48.1M	46.3	49.2M	50.4M	50.1M	W	53.7M	57. PM	53.6	W
	Max.	16		78	91	80	69	60	62	63	71	69	63	65	70	74	82	82
	Min.	33	017	74	42	41	35	34	33	36	38	36	39	42	43	45	51	33
Rowf Ross	Avg. Max.	60.9	65.5	67.2	68.3	66.3	59.3	56.0	54.8	56.5	58.4	58.4	59.0	60.6	63.9	68.0	65.7	60.6
3	Avg. Min.	45.3	47.4	48.1	47.3	48.0	44.8	45.4	43.2	40.6	43.1	45.5	42.9	46.7	48.3	49.8	49.0	45,6
	Avg	53]	56.5	57.7	57.8	57.2	52.1	5 7	49.0	48.6	50.8	52.0	51.0	53.7	56.1	58.9	57.4	53.
	Max.	91	72	76	91	81	69	59	67	62	99	65	64	65	20	77	83	8
	Min.	31	43	44	39	39	32	35	31	32	37	37	38	43	45	46	40	15
	Avg. Max.	59.8	64.4	66.0	65.9	64.8	59.1	54.7	54.6	54.8	57.4	57.0M	58.4	60.0	62.9	68.2	65.1M	59.8
LOIND ALGUA	Avg. Min.	11 C 11	118 a	50. 3M	46.3	47.1	L.44	44.7	43.5	40.6	42.6	45.4M	44.0	47.6	48.9	51.7	48.3M	45.7
	Avg.	50.6	56.7	58. 2M	56.1	56.0	51.6	49.7	49.1	47.7	50.0	51.2M	51.2	53.8	55.9	60.0	56.7M	52. B
DISCINN BINEB (EQ)	Max.	107	105	104	107	100	76	67	71	78	81	92	90	93	98	66	95	107
1	Min.	90	47	48	42	44	30	30	28	. 35	33	33	40	47	917	49	43	28
Cloverdale 3 SSE	Avg. Max.	73.0	91.9	91.9	85.6	81.5	60.8	57.3	57.0	62.9	66.4	165.9	77.4	77.8	87.6	88.9	80.6	72.0
	Avg. Min.	45.7	52.2	53.5	49.7	50.7	40.8	41.2	37.7	38.3	41.2	45.5	47.1	50.1	50.8	54.7	47.8	45.5
	Avg.	59.4	72.1	72.7	67.7	66.1	50.8	49.3	47.4	50.6	53.8	1.44	02.3	04*0	2.60	0.11	04.5	0 *

10	DATA
-A	JRE
Ш	RATUI
A B	Б
F	TEM

						Tem	Temperature in Degrees Fahrenheit	in Degree	s Fahrenho	ait								
STATION NAME		SEASON July I			1964							-	1965					SEASON Oct. 1
		to June 30	JULY	AUG.	SEPT.	OCT.	. VON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	to Sept. 30
							ton)	th Coas	HYDROGRAPHIC AREA F (North Coastal Area)									
RUSSIAN RIVER (F9)	Max.	106	106.	103	104	94	76	66	73	76	79	88	92	96	102	100	93	102
	Min.	24	14.44	47	38	37	25	25	24	28	31	30	28		41	49	35	24
Coyote Dam	Avg. Max.	W	89.0	92.1	87.5	81.0	M	54.3	54.3	63.7	64.3	64.6	W	81.3	91.0	88.4	86.3	W
	Avg. Min.	М	50.8.	51.9	44.7	43.1	M	38.8	34.3	32.6	36.7	42.7	W	47.0	48.4	52.6	43.9	W
	Avg.	М	69.9	72.0	66.1	62.1	М	46.6	44.3	48.2	50.5	53.7	M	64.2	69.7	70.5	65.1	M
	Max.	106	104	102	106	100	74	65	64	72	79	95	68	95	91	99	95	100
	Min.	27	τħ	43	38	37	28	27	27	30	33	33	35	42	41	47	34	27
Graton	Avg. Max.	70.9	85.2	86.7	84.7	80.7	60.1	55.9	53.8	62.4	63.6	66.6	77.0	74.2	82.3.	85.9	79.6	70.2
	Avg. Min.	44.2	49.5	50.0	47.0	46.5	42.8	42.1	40.0	36.5	40.4	44.8	42.5	48.0	49.4	51.8	47.4	44.4
	Avg.	57.6	67.4	68.4	65.3	63.6	51.5	49.0	46.9	49.5	52.0	55.7	59.8	61.1	62.9	68.9	63.5	57.3
	Max.	101	99	99	101	94	65	64	62	71	76	90	85	89	89	95	88	95
	Min.	26	017	42	38	37	28	28	26	30	32	31	35	41	40	45	35	26
Graton 1 W	Avg. Max.	69.7	85.4		82.9	78.0	58.1	56.4	54.0	61.3	62.2	65.6	74.8	72.4	80.9	83.7	74.9	68.5
	Avg. Min.	43.1	48.1	48.7	46.7	46.3	41.1	42.3	38.1	35.4	39.6	43.6	41.4	46.4	47.1	50.2	45.6	43.1
	Avg.	56.4	66.8	67.3	64,8	62.2	49.6	49.4	46.1	48.4	50.9	54.6	58.1	59.4	64.0	67.0	60.3	55.8
	Max.	108	106	105	108	100	-75	67	68	76	82	96	90	95	97	99	95	100
	Min.	29	917	47	42	42	30	30	29	34	35.	34	41	45	45	48	39	29
Healdsburg	Avg. Max.	73.7	91.1	90.9	87.7	82.5	61.6	58.4	55.9	64.1	6.99	68.7	78.4	77.8	87.4	89.5	82.3	72.8
	Avg. Min.	46.3	52.1	52.9	51.4	49.5	42.1	42.8	39.5	39.0	42.3	46.5	46.6	50.4	51.1	54.1	49.2	46.1
	Avg	60.0	- 71.6	71.9	69.6	66.0	51.9	50.6	47.7	51.6	54.6	57.6	62.5	64.1	69.3	71.8	65.8	59.5
	Max.	- 93	82	92	32	- 93	77	61	70	73	74	78	78	80	84	87	92	93
	Min.	28	017	42	40	42	32	32	28	33	36	36	38	44	42	51	42	28
Inverness-Mery	Avg. Max.	65.4	74.4	74.8	74.6	73.1	61.4	56.6	57.9	60.7	61.5	62.1	63.0	65.2	72.2	72.8	73.5	65.0
	Avg. Min.	46.3	50.9	51.2	49.8	50.7	43.8	44,8	41.9	40,2.	44.0	44.6	44.4	49.4	50.2	53.2	50.4	46.5
	Avg.	55.0	. 62.7	63.0	62.2	61.9	52.6	50.7	49.9	50.5	52.8	53.4	53.7	57.3	61.2	63.0	62.0	55.8
	. жпж	101	99	101	101	98	76	66	70	73.	. 76	88	86	M	M	M	M	M
	Min.	22	. 39.	40	36	31	23	22	23	27	29	29	29	W	W	W	М	22
Knights Valley	Avg. Mux.	W	.88.0	89.7M	W	83.1	60.8	57.7	57.6	62.8	63.7	65.8	75.9	W	W	М	M	M
	Avg. Min.	W	46.1		M	40.1	38.8	39.0	37.5	33.7	37.0	41.5	38.6	Ψ	W	W	М	М
	Avg.	W	67.1	M4.93	W	61.6	49.8	48.4	47.6	48.3	50.4	53.7	57.3	W	W	W	W	W

TABLE A-3

ю	DATA
4	URE
BLE	RAT
TA	MPE
	ΗE

						E	Tomorrow in Doorson Fahranhoit	Doornoo	Fahranho	44								
						lun v	A man a	-									╞	SEASON
CTATION NAME		SEASON July 1			1964						ŀ	Ī	1965	ł	ł	ŀ	Τ	Oct. 1
TIND NOTTOTS		to June 30	ATOL	AUG.	SEPT.	ocr.	. VON	DEC.	JAN.	FEB.	MAR.	APR.	. AVA	JUNE	JULY	AUG. S	SEPT.	sept 30
							HYDR (Nor	HYDROGRAPHIC AREA F (North Coastal Area)	C AREA F tal Area									
(PA) BIVEN (PO)	Max.	108	108	104	105	98	75,	64 5	74	74	81	90 _ 90	92	98 10	102 9	99	97	102
	Mín.	0.3	111	39	38	32	t			25	27	29 3	31	37	М	W	34	23
	Avg. Max.	×	95.3M	95.4M	X	85.5M	. IM	53.2M	57.0M	65.6M	66.9M	70.9M 7	78.7M	W	W	W	89, OM	W
Potter Valley F. H.	Avg. Min.	W	50.6M	50.3M	×	40.7M	34,9M	ЪM	8M	30. 8M	35.1M	40.4M 3	39.2M	М	W	M	43.6M	W
	Avg.	W	73. OM	72.9M	W	63.1M	48. OM	44.9M	45.4M	48, 2M	51. OM	55.7M 5	59, OM	M	W	×	66.3M	M
	Max.	104	66	102	104	97	76	68	66	74	78	93	87	89	91 9	96	93	97
	Min.	22	45	45	42	39	27	22	26	31	34	32	38	43 4	43. 4	48	37	22
Sonto Rosa	Avg. Max.	71.4	84.5	86.0	83.4	81.0	62.7	58.7	56.3	63.3	65.4	66.8	75.6	73.5	81.3 8	85.9	79.9.	70.9
adita IV-a	Avg. Min.	43.5	6.64	50.5	0.64	46.5	38.9	40.4	37.6	35.2	39.0	43.6	43.6	47.7	49.5	52.2	46.7	43.5.
	Avg.	5.7.5	67.2	68.3	66.2	63.8	50.8	49.6	47.0	49.3	52.2	55.2	59.6	60.6 (65.4 6	69.1	63.3	57.2
	Max.	96	96	95	96	93	. 73	67	64	71	75	91	84	85	90	32	91	93
	Min.	25	44	45	42	37	26	25	26	30	33	30	38	42	45	49	36	25
Conto Roca Sausano	Avg. Max.	67.7	78.9		76.8	75.6	60,2	57.4	55.2	61.4	61.7	64.3	71.4	70.5	77.6	81.5	76.3	67.8
Plant	Avg. Min.	44.0	49.7	51.2	49.2	46.3	40.2	41.0	38.3	35.8	40.2	44.1	43.5	48.3	50.2	53.3	47.3	44.0
	Avg.	55.9	64.3	64.8	63.0	61.0	50.2	49.2	46.8	48.6	51.0	54.2	57.5.	59.4	63.9 (67.4	61.8	55.9
	Max.	110	011	106	108	98	77	65	74	75	82	92	91	98 1	103 1	101	96	103
	Min.	26	46	48	42	37	26	27	26	29	31	32	32	42	48	50	37	26
1164 2.	Avg. Max.	73.5	90.9	92.5	88.1	81.8	60.0	54.7	57.9	64.3	66.0	67.7	76.6	81.7	92.5	90.1	85.3	73.2
	Avg. Min.	44.2	53.9	53.7	47.2	47.1	39.3.	41.1	38.0	34.8	39.1	43.5	43.7	48.7	53.4	55.1	46.6	44.2
	Avg.	58.3	72.4	73.1	67.7	64.5	49.7	47.9	48.0	49.6	52.6	55.6	60,2	65.2	73.0	72.6	66.0	58.7
	Max.	100	- 26	66	100	93	70	62	63	73	76	90	84	-+	+	94	68	94
	Min.	21	715	42	38	35	24	25	25	21	30	32	32	40	1	46	34	21
	Avg. Max.	68.1	81.6	82.4	80.7	0.77	58.0	55.8	48.9	60.0	62.3	65.7	73.9	-+	+	81.4	74.1	67.5
	Avg. Min.	W	49.9	49.1	45.6	44.8	41.1	41.0	36.5	33.7	40.2	42.4	W	+	-+	51.7	47.4	×
	Avg.	М	65.8	65.8	63.2	60.9	49.6	48.4	42.7	46.9	51.3	54.1	×	58.7	65.1	66.6	60.8	W
	Max.																	
	Min.																	
	Avg. Max.												1					
	Avg. Min.												+					
	AVR																	

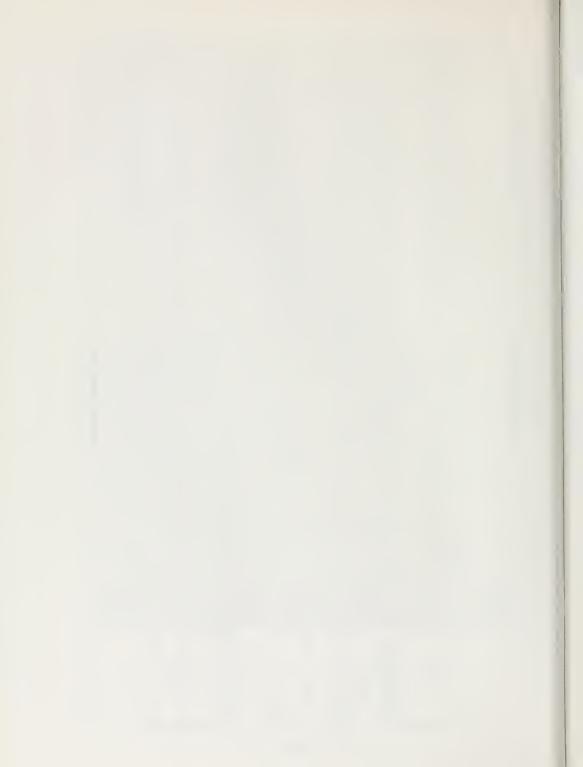
4-	DATA
TABLE A	EVAPORATION

	Evaporation	Evaporation in Inches				Wind ?	Wind Movement in Total Miles	in Total N	diles				Wate	Mater Temperature in Degrees Fahrenheit	ture in D	egrees F.	ahrenheit	
		TOTAL July 1			1964							1965						TOTAL Oct. 1
STATION NAME		June 30	JULY	AUG.	SEPT.	OCT.	• NON	DEG.	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEPT.	To Sept 30
							HYDR (Centr	HYDROGRAPHIC AREA D Central Cosstal Area)	C AREA D tal Area									
PAJARO-SAM BENITO RIVER Even (D1) Hume House Hollister Costn Mage Mage	Evap. Wind Movement Mater Temp. Nage Mare. Avg. Min.	61.31	8,80	7,82	7.47	5.81	4.12	1,90	1,61	1.96	3.25	3.79	7.08	7.67	6.93	6.75	4.5-	55.44.
LOWER SALINAS RIVER DOP (D2) San Lucas-Outdict	Evap. WInd Movement Water Temp. Avg. Max. Avg. Min.	61.92E	10.37	7.23	6.04	h.32	3.17	1.89	1.726	2.72	4.15E	4.426	44.7	8.45	8.38	8.47	5.97	61.10E
Santa Rits-Muther	Evap. Mudement Water Temp. Avg. Max. Avg. Min.		5, 88 E 1897	5.30 1072	4.96	4.23 1643	2.76	1.29 1462	2.12	2,41 2905	3.52 4272	P 1	1 1	k I.	1 1	1 1	1 1	1 1
Soledad CTF	Evap Wind Movement Water Temp. Avg. Man. Avg. Min.	62.83 53196 -	8, 21 4597 -	7.36 3036 -	7.18 3499 75.2 50.8	5.08 3376 75.4 52.2	2.57 2851 62.1 42.2	2.01 3745 59.0 43.0	1.93 4691 57.9 40.6	3,48 4085 62,1 39,3	4.26 4881 65.3 42.6	5.06 4870 70.3 46.0	8.16 6827 73.4 46.5	7.53 6738 75.0 49.1	7.99 6437 79.4 50.9	7.45 5833 80.4 55.0	6.27 4874 75.1 51.0	61.79 59197 69.7 46.5
UPPER SALINAS RIVER (D3) Nocimiento Dae	Evap. Wind Moveent Water Temp Avg. Max Water Temp Avg. Min.	69.80	34.11	10.58	7.25	6.05	2.02	1.54	1.52	2.44	3.72	5.27	9.01	8,92	10,45	10.92	7.09	68.95

-42-

1

۸ ۵


TABLE A-4 EVAPORATION DATA

	Evaporatic	Evaporation in Inches				Wind N	lovement i	Wind Movement in Total Miles	fles				Wate	r Tempera	Water Temperature in Degrees Fahrenheit	egrees Fa	shrenheit	
		TOTAL July 1			1964							1965						TOTAL Oct. 1
STATION NAME		To June 30	JULY	AUG.	SEPT.	OCT.	. VON	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	To Sept 30
							HYDF. (San F	HYDROGRAPHIC AREA E San Franciaco Bay Area)	Bay Ar	ea)								
NAPA-SOLANO (E3)	Evap.	62,42	9.73	9.37	7.56	4.88	2.33_	1.06	1.03	2.67	3.52	3,68	8.17_	8.42	8.76	8.23	6.33	59.68
	Wind Movement	33859	4001	3853	2907	2120	2286	2059	2139	1837	2351	2284	3309	4713	3918	3149	2718	32783
Duttona Landing	Water Temp. Avg. Max.	1	84.0	83.1	80.4	75.0		1	55.1	62.3	67.2	71.9	79.1	77.6	82.4	84.2	77.8	
	Water Temp. Avg. Min.	I	54.6	55.0	52.6	50.3	1		41.5	39.8	44.3	48.0	48.5	50.7	52.4	57.0	50.6	
	Evap.	53.13	8.55	8.32	7.32	3,66	1.53	1,09	1.15	1.86	2,28	3.45	7.25	6,67	9,12	6.42	5.26	50.44
Voutet111 - Control	Wind Movement	,	1492	1099	1119	1153	1270	1084	801	1557	1254	993		-	,	2343	1802	1
aldmed-allivinor	Water Temp. Avg. Max.																	
	Avg. Min.													-				
ALAMEDA CREEK (E5)	Evap.	69.21	12.48	10.54	7.36	5.39	2.46	1.07	1.58	2,81	3.85	4.36	8,46	8.85	11,02	9,81	7.69	67.35
Livermore Sewage	Wind Movement Water Temp.	22350	2580	2510	1690	1320.	880	1100	1750	1620	2050	1830	2760	2260	2150	2040	1410	21170
Plant	Avg. Max. Water Temp. Avg. Min.																	
	Evap.	69.34	10.29	9.64	8.24	5,13	2.48	1.54	1.30	2.82	4.62	5.41	9.24	8.63	8.89	8.65	6,59	65,30
	Wind Movement	10347	3803	3457	3087	2487	2752	3110	3001	2542	3540	3976	4714	4437	3602	3458	2922	10541
Newark	Water Temp. Avg. Max.																	
	Water Temp. Avg. Min.																	
SANTA CLARA VALLEY	Evap.	62,68	9.81	9.18	7.31	5.04	1.82	1.05.	1,24	2,65	4.14	4.52	8.32	7.60	8,50	8,41	5,45	58.74
(E6) Alamitoa Perc	Wind Movement Water Temp	19850	1527	1907	1721	1643	1364	1494	1500	1389	1741	1669	1995	1900	1783	1586	1393	13457
Pond	Avg. Max. Water Temp.																	
	Avg. Min.																	

4	DATA
Δ	NOI
BLE	ORAT
ΤA	E VAP(

TABLE A-4 EVAPORATION DATA

	Evaporatio	Evuporation in Inches				Wind N	lovcment f	Wind Movement in Total Miles	files				Mat	Water Temperature in Degrees Fahrenheit	turc in D	egrees Fa	anrenneit	
		TOTAL July 1			1964							1961						TOTAL Oct. 1
SIATION NAME		To June 30	JULY	AUG.	SEPT.	OCT.	. VON	DEC.	JAN.	FEB.	MAR	APR.	MAY	JUNE	JULY	AUG.	SEPT.	l. Sept. 30
							HYDF (Nor	HYDROGRAPHIC AREA F (North Constal Are:)	C AREA I tal Are:									
(. a) annual to (.	Evap		44 11	11 03	01.07	Br. 10	B, or,		в 90	B1.69	B3, 67	4.09	8.30	8.56	11.37	3.6	74	H.
(1.4) NAVIN NA	Wind Movement	17:15	19.1	1871			BLU26	1152	в ₈₉₈	B ₁₀₂₀	B1245	1424	1668	1551	1620	164c	1504	1637
oyde: ·	Water Temp Avg. Max	1	6.48	۶5.3	76.3	71.	t	5.5	49.0	55.5	63.2	65.9	1	81,1	86.5	83.5	78.	1.5
	Water Temp Avg. Min		4.0	54.0	47.4	47.6	t	39.°	35.8	35.7	39.6	43.5	1	49.4	53.3	54.5	47.1	1
	Evap.		7.6	7.50		4.24	1.93	2.73	- 92	2.35	2.58	.59	5.15	,				I.
	Wind Movement	1	43-	414	61)	357	744	162	623	846	887	967	0.9	1	1	,	,	1
16(11)	Water Tong. Avg. Man	1			1		1	56.5	54,2	61.7	66.9	72.4	85,1	E	I	,	'	1
	Water Temp Avg Min		1	1		ı		44.4	42.2	40.6	45.1	4.04	52.8	1	1	,	,	-
	Evap.	39.26	10,13	8, 69	7.12	4.48	2.05	.98	1.03	2.05	3.52	3.67	8.09	7.25	2.16	35.7	6.10	54° 45
nt in	Wind Movement Water Temp.	4030	3150	2605	24.04	1987	215	2804	1586	1678	2233	2732	3024	3135	2764	7962	:373	Lett
	Avg. Max. Water Temp Avg. Min.																	
	vap.	1	1.17	9.73	7.25	5.04	2,29	-92	RE									
	Wind Movement W. ter Temb																	
	Avg. Max.																Ť	
	Water Temp Avg. Min																	
	Press																	
	Mind																	
	Water Tent																	
	Water still																	
	AVE. DIR.																	

Appendix B

SURFACE WATER FLOW

INTRODUCTION

This appendix presents surface water measurement data collected and assembled by the Department of Water Resources. It contains information collected in the Central Coastal Area during the 1965 water year covering the period from October 1, 1964, through September 30, 1965.

Definition of Terms

The following terms are commonly used:

<u>Cubic foot per second</u>, or <u>second-foot</u>, is the unit rate of discharge of water. One cubic foot per second is a cubic foot of water passing a given point in one second.

<u>Gage Height</u> or <u>Stage</u> is the elevation of the water surface above an assigned datum as measured by a gage. It is measured in feet to the nearest 0.01 foot.

<u>Acre-foot</u> is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Water year</u> is the 12-month period from October 1 of one year through September 30 of the subsequent year and is normally designated by the calendar year in which it is terminated.

Methods and Procedures

Streamflow Measurements

A stream gaging station is equipped with a continuous water stage recorder for which a stage-discharge relationship or rating is developed. The rating gives the flow or discharge in cubic feet per second (c.f.s.) for each water stage or gage height at a station. Given the rating and continuous water stage record, mean daily discharges are determined by electronic data processing methods.

-49-

The rating is developed by making streamflow measurements with a current meter at various water stages ranging from near minimum to near maximum. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel is of loose shifting sand and gravel or where vegetative growth builds up in the channel changing the flow regime. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the discharge, and manual computation may be required. Measurement procedures which have been employed are consistent with those used by the U. S. Geological Survey. 1010

acre

is a

inst

is t

are

the

a\$ 1

sing

pub!

impo

are Dail

lear and

abou

Tidal Stage Measurements

Along the Pacific Coast, there are usually two high and two low tides in a day. The lunar or tidal day is about 50 minutes longer than the solar day because tides are more strongly influenced by the moon than by the sun. The two high and two low tides which are usually unequal are commonly designated as higher high, lower high, higher low, and lower low waters. Tidal stage stations are equipped with continuous water level recorders.

Coding System

The station numbering system is that which is given in the Department publication entitled "Index of Stream Gaging Stations In and Adjacent to California, 1966". The stations for which data are given in this report are described either in the explanation of tables or in the tables.

EXPLANATION OF TABLES

Daily Mean Discharge

Table B-1 presents daily mean discharges in Butano Creek near Pescadero. The mean, maximum, and minimum values at the bottom of each

- 50-

monthly column are representative of that month and year only. The acre-feet value for each month is a total of the daily values which are converted to acre-feet for the computation. The mean discharge under "Water Year Summary" is an average of the monthly means. The maximum and minimum discharges are instantaneous extremes that occurred during the year. The total acre-feet is the sum of the monthly acre-feet values. When flows at a single station are in excess of 140 percent of the highest measurement on the rating curve, the computed daily mean discharges from the electronic computer are shown as "estimates". Publication of the record of this station will be discontinued with this issue of Bulletin No. 130. Data for future years will be published in the "Surface Water Records" of the U. S. Geological Survey. Imports

Table B-2 presents monthly deliveries of water into the Central Coastal Area. This table indicates the water user and the source of the supply. Monthly and water year total deliveries in acre-feet, average delivery in cubic feet per second, and monthly use in percent of annual are presented.

Daily Mean Gage Height

Table B-3 presents the daily mean gage height for Rector Reservoir near Yountville. These gage heights are from USC&GS mean sea level datum and are indicative of the amount of water in storage. The station is located on the outlet tower of the reservoir. Rector Reservoir is located about three miles northeast of Yountville on Rector Creek.

Daily Maximum and Minimum Tides

Table B-4 lists maximum and minimum tides at the Sacramento River at Collinsville and Suisun Bay at Benicia, respectively. These data are obtained from graphical charts plotted by continuous water stage recorders.

-51-

The values are in feet above -13.05 feet USC&GS mean sea level datum of 1929 at Collinsville and above -10.00 feet at Benicia. The values in most cases represent higher high water and lower low water. During a calendar day in which three instead of four tides occurred, the high and low values may represent lower high water or higher low water. The maximum and minimum values at the bottom of each monthly column represent the extremes observed during that month.

N CLEIC FET

TO 007.

NUB NUX NU NU KE

ESTIMATED
 NO RECORD
 OSSMARGE

Station descriptions and historical data are provided at the bottom of Table B-4.

Corrections and Revisions to Previously Published Surface Water Data

Table B-5 lists corrections and revisions to previously published surface water data in order of publication date.

TABLE B-I

BUTANO CREEK NP RESCADERO

WATER YEAR STATION NO. STATION NAME

E83200

1965

DAILY MEAN DISCHARGE

.929

es

1

eđ

(IN CUBIC FEET PER SECOND)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	0.8	5.3	2.7	39	31 E	10	16	19	11	4.4	1.8	1.5	
2	0.7	5.2	3.3	44	30 E	10	15	19	11	4.4	1.8	1.5	
3	0.6	4.2	3.2	258	29 E	10	13	18	11	4.2	1.8	1.0	
4	0.6	2.7	2.7	269	28 E	10	11	18	11	4.0	1.9	2.1	
5	0.5	2.4	2.5	325 *	27 E	12	11	17	10	3.9	2.1	2.3	
6	0.5	2.2	2.3	NR	27 E	15	10	16	9.3	3.7	2.0	2.5	
7	0.6	2.3	2.3	NR	25 E	12	11	16	9.0	3.6	1.8	2.8	
8	0.4	4.8	2.2	NR	24 E	11	62	16	9.0	3.5	1.8	2.9	
9	0.3	23	2.2	NR	23 E	11	301	1.6	9.0	3.3	1.9	3.3	
10	0.4	28	2.3	NR	22 E	10	242	16	8.8	3.2	2.0	3.3	
11	0.5	16	3.4	NR	21 E	10	134	16	8.6	3.2	2.0	2.4	
12	0.5	17 *	2.9	NR	21 E	11	85	15	8.3	3.2	1.9	2.9	
13	0.7	12 *	2.3	NR	20 E	13	58	15	8.6	3.0	1.8	3.0	
14	0.48	7.5	2.4	NR	19 E	14	50	12	8.6	2.9	1.7	1.0	
15	0.8	5.5	2.5	NR	18 E	12	58 *	10	8.6	2.9	1.7	0.9	
16	0.8*	4.4	2.4	NP	17 E	11	447	10	7.3*	2.9	1.8	0.9	
17	0.8	3.7	2.2	NR	16 E	10	148	10	6.5	2.8	1.8	0.8	
18	0.7	3.0*	2.5	NR	15 E	10	89	10	6.9	2.8	2 • 1	0.6	
19	0.6	2.6	28	37 #	15 E	9.5	65	10	6.7	2.9	2.4	0.8	
20	0.5	2.4	37	32	14 E	9.5	53	10	6.9	2.9	2.4	0.7	
21	0.2	2.5	144 *	31	13 E	9.0	50	10	7.3	2.5*	2.4	0.8	
22	0.3	3.6	481 *	29	12 E	8.6	43	10	7.7	2.3	2 • 4	1.0	
23	0.5*	2.4	389 *	61	12 E	8.6	36	10	7.5	2.4	2.4	1.1	
24	0.7	2.3	263	68	12 E	8.3	32	10	7.7	2.4	2.4	0.8	
25	^.7	2.3	125	43	11 #	8+1*	29	10 *	8.1*	2.2	1.8	0.8	
26	n.9	2.4	113	38 E	11	8.1	27	10	7.1	2.4	1.7	1.0	
27	1.0	2.5	143	37 E	15	18	25	10	5.5	2.2	1.6	1.1	
28	2.5	2.3	100	36 E	12	11	23	10	4.5*	2.2	1.7	1.1	
29	7.3	2.2	70	33 E		9.5	21	11	4.4	2.2	1.9	1.1	
30	6.1	2.2	65	32 E		9.2	20	11	4.4	2.2	1.4	1.2	
31	2.9		60	32 E		22		11		2.4	1.8		
EAN	1.1	6.0	66.6	NR	19.3E	11.0	72.8	13.0	8.0	3.0	1.9	1.6	M
AAX.	7.3	28.0 2.2	69]	NR	31.0E	22.0	447	19.0	11.0	4.4	2.4	3.3	17
AIN.	n.3		2.2	NR	11.0E	8.1	10.0	10.0	4.4	2.2	1.4	0.6	A
C. FT.	70.1	355	4094	NR	107 LE	677	4334	797.	477	185	119	96	1

MEAN		MAXIMU	M				MINIM	JM		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
	NR)	NR				

TOTAL ACRE FEET

NR

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUOE	LOHGITUDE	1/4 SEC. T. & R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
CANTOOL	LONGITUVE	M.O B.&M.	CFS	GAGE HT.	DATE	of bellaket		FROM	то	GAGE	DATUM
37° 13' 49"	122° 21' 51"	SW14 88 4W	1340	16.21	1/31/63	June 62-Date	June 62-Date	1962		0.00	Local

Station located 1.7 mi. SW intersection Pescadero Road and Old Stage Road in Pescadero. Tributary to Pescadero Creek. Recorder installed June 22, 1962.

B-2 TABLE

AREA	
COASTAL	
TO THE CENTRAL	
TO THE	
TER IMPORTS	
₹	
SURFACE M	

						1965 M	1965 WATER YEAR	EAR					
IMPORT	OCT	NOV	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	TOTAL
CITY OF VALLEJO FROM CACHE SLOUGH Total acre-feet Average cubic feet per second Monthly quantities in percent of seasonal	1,358 22 10	745 13 6	670 11 5	774 13 6	731 13 5	875 14 7	714 12 5	1,481 24 11	1,488 25 11	1,604 26 12	1,608 26 12	1,493 25 11	13,539
CONTRA COSTA CANAL Total acre-feet Average cubic feet per accond Monthly quantities in percent of seasonal	5,255 85 9	3,884 65 7	3,463 56 7	3,075 50 5	3,162 57 6	3,704 60 7	3,695 62	5,654 92 10	5,474 92 10	6,608 107 12	7,168 117 12	5,385 90 9	56 , 527 96
HETCH HETCHY AQUEDUCT Total acre-feet Average cubic feet per second Monthly quantities in percent of seasonal	16,155 26 3 10	15,747 265 9	16,298 265 10	9,682 157 6	6,295 113 4	13,043 212 7	14,358 241 8	14,542 237 9	14,150 238 8	18,720 304 11	15,548 253 9	14,959 251 9	169,497
<u>MOKELUMNE RIVER AQUEDUCT</u> Total acre-fect Average cuble feet per second Monthly quantities in percent of seasonal	17,916 291 11	14,14 3 238 8	12,129 197 7	4,536 74 3	13,278 239 8	9,427 153 5	9,688 163	17,689 288 10	17,489 294 10	18,115 295 11	18,095 294 11	17,313 291 10	169,818 234
POTTER VALLEY POWERHOUSE FROM EEL RIVER Total acro-feet Average cubic feet per second Monthly quantities in percent of seasonal	17,090 277 9	18,310 308 10	15,650 255 8	18,580 302 10	16,930 305 9	9,450 154 5	17,680 297 9	18,560 302 10	12,330 207 7	13,480 219 7	13,880 226 7	16,970 285 9	188,900 261
PUTAHI SOUTHI CANAL * Total acre-feet Average cubic feet per second Monthly quantities in percent of seasonal	7,824 127 5	26 0.4 0.1	355 5.8 0.5	000	311 5.6 0.4	3,285 53 2	3,294 55 2	20,773 338 14	27,624 464 19	29,179 475 20	25,131 409 17	29,486 496 20	147,288
SOUTH BAY AQUEDUCT Total acre-feet Average cubic feet per socond Monthly quantities in percent of seasonal	2,469 40 8	1,479 25 5	109 1.8 0.3	000	31 0.6 0.1	192 3.1 0.6	206 3.4 1	2,012 33 6	3,683 62 12	5,655 92 19	7,537 123 25	7,032 118 23	30,405
* A portion of this water is delivered to the Central Cassal Arca by the Solano Irrigation District.													

(MATHIN VEAR STORM PARAM PARA

DAILY MEAN GAGE HEIGHT

Trigation District. A se of the solans

TABLE B-3

JAILY MEAN GAGE HEIGHT 1965 E31400 RECTOR RESERVOIR NEAR YOUNTVILLE	E31400		WATER YEAR SI	TATION NO.	NATER YEAR STATION NO. STATION NAME
		DAILY MEAN GAGE HEIGH	1965	E31400	RECTOR RESERVOIR NEAR YOUNTVILLE

DAY	-	3	9	4	ŝ	ş		~	60	6	10	=	: -	4 4	2	4	15		16	17	18	19	20	21		4	53	24	25	46		1	28	29	30	31
SEPT.	356.49	356.33	356.10	356.05	355.90	355.76	266 60	80.000	86.665	355.42	355.27	355.13	355 04		07.100	354.90	354.75	_	354.59	354.48	354.43	354.40	354.36	154 30	11.100	014.10	204.000	06.565	353.86	353.75	353.70	353 68	010000		04.565	
AUG.	360.73	360.60	360.46	360.28	360.11	359,94	10 010	10.600	359.70	359.60	359.45	359.33	350 77	14.000	21.600	358.94	358.77		358.65	358.58	358.43	358.29	358.13	358 07		00./00	1/ · / CC	357.60	357.45	357.30	357.13	357 03		/0.000	356.79	356.66
JULY	364.85	364.78	364.65	364.49	364.35	364.22		304.12	363.99	363.86	363.71	363.56	363 / 8		303.32	363.18	363.00		362.86	362.75	362.62	362.53	362.39	367 21		201109	26.105	361.86	361.72	361.66	361 56	07 170	04.100	201.13	360.95	360.86
JUNE	368.28	368.06	367.99	367.83	367.76	367.70		C0./0£	367.59	367.47	367.34	367.22	C1 L7C	71.100	300.98	366.90	366.84		366.79	366.63	366.49	366.34	366.21	366 13		200.03	60.005	365.74	365.68	365.57	365 40	10 100	10.000	61.000	365.01	
MAY	370.17	370.17	370.15	370.14	370.14	370.14		370.11	370.10	370.05	370.03	370.03	20.010		369.84	369.76	369.73		369.63	369.59	369.47	369.36	369.27	360 17	11.000	369.13	509.03	368.95	368.84	368.72	362 50		14.000	368.40	368.37	368.33
APR.	370.14	370.14	370.16	370.17	370.16	370 13		370.04	370.02	370.30	370.33	370.29		C7.0/C	370.23	370.23	370.20		370.43	370.34	370.33	370.37	370.32	10 020	10.0/0	05.0/5	370.28	370.25	370.23	370.21	370.20	07.010	0/0°TQ	370.18	370.17	
MAR.	370.15	370.16	370.17	370.17	370.12	370 13		370.14	370.15	370.11	370.07	370 01		CK . KOC	369.96	369.92	369.92		369.94	369.90	369.89	369.90	369.91	00 030	74.400	369.95	369.97	369.96	369.92	369 93	00 000	00.010	3/0.04	370.07	370.09	370.13
FEB.	370.23	370.24	370.24	370.24	370.28	370 27	17.010	370.21	370.21	370.18	370.17	370 16		3/0.18	370.18	370.19	370.17		370.15	370.13	370.10	370.12	370.14	35 000	CT • 0/ C	370.15	370.14	370.10	370.06	370 08	210.010	510.14	CL.U/E			
JAN.	370.13	370.11	370.42	370.50	371.00	370 75	r/ • 0/ c	370.47	370.43	370.35	370.31	370 30		3/0.28	370.27	370.26	370.25		370.23	370.24	370.23	370.24	370.21	10 010	3/0.41	370.21	370.21	370.41	370.31	370 27	20.010	07.010	3/0.23	370.23	370.23	370.23
DEC.	346.61	346.50	346.46	346.42	346.40	06 276	040.040	346.30	346.26	346.24	346.20	01 375		346.1/	346.14	346.12	346.02		346.00	345.98	345.88	345.92	346.02	00000	348.00	359.05	370.68	370.38	370.21	370 20	10.000	0 / 0 ° 2 ¢	3/0.29	370.20	370.20	370.18
NOV.	345.90	345.85	345.87	345.90	345.90	00 370	76.040	345.93	345.99	346.22	346.74	00 775	10.040	347.11	347.07	347.07	347.06		346.95	346.92	346.90	346.88	346.84		340.02	346.80	346.80	346.70	346.68	31.6 66		C0.040	346.63	346.61	346.60	
OCT.	348.41	348.27	348.11	348.00	348.00	10 r / c	CV. / 45	347.81	347.68	347.54	347.40	26 676	07.140	347.11	346.98	346.86	346.72		346.57	346.43	346.30	346.17	346.02	1	345.90	345.88	345.85	345.83	345.81	31.5 70	01.110	340./8	345.79	345.89	345.95	345.98
DAY	-	6	~	4	- in		•	7	00		10	:	=	12	13	14	15		16	17	8	0	20	.0	7	22	23	24	25	20	9	27	28	29	30	31

STAGE TIME STAGE DATE TIME DATE STAGE TIME STAGE DATE 372.33 TIME 0060 1-5~65 DATE

CREST STAGES

NR - NO RECORD NE - NO FLOW

E - ESTIMATED

TABLE B-4 DAILY MAXIMUM AND MINIMUM TIDES*

		DAILY M	AXIMUM	AND MININ	NUM TIDE	S *					STATION NO	WATER	
		SACRAMEN	TO RIVER A	T COLLINSV	ILLE	int	(e e 1				831110	1965	
DATE	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OATE
	15.29 11.97	16.40 12.77	16+28 12+28	17.20	16.70 12.39	15.84 11.51	15.91 12.53	16.13 11.69	17.09 11.43	16.75 11.19	15.81 11.73	16.12 12.40	
2	16.10	15.79	16.52	17.34 13.80	16.54 12.31	15.88 11.69	16.09 12.41	16.23 11.42	16.93 11.42	16.57 11.41	15.95	16.22	2
3	16.09 12.13	15.70	16.28	17.82	16.37 12.35	15.85 11.87	15.99 12.10	16.28 11.28	16.78 11.43	16.29 11.55	16.03 12.30	16.15	3
4	16.05 12.41	15.86 11.89	16.15 11.62	17.65 13.76	16.21 12.55	16.00 12.22	16.31 12.05	16.48 11.42	16.60 11.49	15.72 11.49	16.08 12.44	16.11	4
5	15+87 12+52	15.96	16.02	18.02 14.41	16.30 12.89	15•72 12•22	16.39 12.00	16.09 10.93	16.03 11.43	15.96 11.77	16.18 12.17	16.24	5
6	15.94 12.55	16.03 11.95	15.83	17.93 14.70	16.39 13.93	15.74 12.28	16.31 11.80	15.68 10.70	15.71 11.35	16.06 12.06	16.25 12.03	16.07 12.00	6
7	16:05 12:44	16.24 13.89	15.80 11.55	17.08 14.27	16.10 12.91	15+85 12+33	16.28 11.77	15.36 10.80	15.90 11.60	16.24 12.24	16.29 11.94	15.25	7
8	15.86	12:10	15.74	16.61 15.48	16.18 13.09	16.04 12.18	16.61 12.24	15.14 10.84	15.96 11.96	16.48 12.08	14.91 11.72	16.13 11.91	8
9	15.89 13.19	16.52 12.43	15.54 11.72	16.52 14.25	16.11 12.44	16.15 12.01	16.54 12.15	15.30 11.06	16.16 11.97	16.39 11.89	16.28 11.71	16.12 12.03	9
10	15.85	15.93 12.48	15.18 11.67	16.76 14.12	16.25 12.30	16.11 11.81	16.38 12.08	14.96 11.28	14.83	14.81 11.60	16.25 11.71	16.17	10
	15.79 12.10	15.91 12.16	15.24	17.06 14.01	16.47 11.96	16.18 11.91	15.89 11.72	15.53 11.68	16.43 11.80	16.36 11.49	16.29 11.75	15.96	11
12	16+18 12+18	15.60	15.01 12.76	17.19 13.81	16.65	16.50 11.80	16.09 11.98	15.82 11.98	16.54 11.63	16.40 11.50	16.11 11.64	15.78 12.24	12
13	15:62	15•49 12•20	14.89 11.38	17:08 13:12	17.04 11.99	16.02 11.30	16.04 12.18	16.18 12.01	16.36 11.39	16453 11.65	15.95 11.59	15.73 12.46	13
14	15.35 12.01	15.32 11.80	15.39 11.78	17.22 12.90	17.20 12.09	16.23 11.58	16.11 12.51	16.18 11.51	16.38 11.38	16.39 11.59	15.94 11.83	15.70 12.41	14
18	15.54 11.93	15.21 11.65	15.86 11.92	17.55 12.78	17.10 12.08	16+39 11+69	16.39 12.60	16.11 11.38	16.35 11.29	16.34 11.64	15.83 12.06	16.04 12.28	15
16	12:06	15.71 12.05	16.30 11.67	17.38 12.46	16.73 11.93	16.13 11.60	12:33	11:29	11:38	11:32	12:13	12:37	16
17	11:32	12:83	19:78	17:41	11:32	15.72	16.34 12.04	16.18 11.25	16.26 11.67	16.09 11.84	15+82 12+44	16.27 11.94	17
18	15 + 30 11 + 95	16.28 12.33	16.92 11.89	17.38 12.48	16.04 12.08	15.47 11.78	16.32 12.01	15.98 11.26	15.73 11.25	15.75 11.78	15.92 12.60	16.37 11.97	18
19	15.37 12.03	16.33 11.70	17.55 12.19	17•44 12•70	15.93 12.32	15.58 11.02	16.22 11.94	15.86 11.28	15.48 11.38	15.50 11.90	15.97 12.60	16.26 11.78	19
20	15.65	16.51 11.66	17.29 12.11	17.09 12.70	16.15 12.81	15.59 11.68	16.03 11.92	15.41 11.20	15.46 11.62	15.58 11.81	16.27 12.13	16.30 11.65	20
21	15.88 11.98	16.58 13.33	17.46 14.22	16.44 12.48	16.30 12.85	15.64 11.65	15.71 11.91	15.20 11.31	15.70 11.79	15.72 12.07	16.52 11.95	15.15	21
22	16.16 12.04	16.39 11.59	17.71 12.55	16.25 12.61	16.29 12.65	15.85 11.96	15.41 11.95	14.86 11.17	15.92 12.10	16.13 12.22	16.70 11.79	16.34 11.73	22
23	16.58 13.35	16.19 11.48	17.05 13.50	16.35 13.82	15.75 12.27	15.83 11.79	14.96 11.81	15.03 11.35	16.10 12.33	16.40 12.14	16.80 11.73	16.41 11.91	23
24	16.53	15.85 11.45	17.58	16 91 13 38	15:88 11:78	15.55	15.17 11.75	15.12 11.35	16.24 12.37	16.71 11.86	15.29 11.78	16.43 12.16	24
25	16.40 12.04	15.72 11.58	18.02 15.22	16.20 12.78	15.54 11.55	15.14 11.51	14.85 11.92	15.40 11.61	16.50 11.95	16.95 11.81	16.89 11.80	16.29 12.39	25
26	16 • 35 11 • 94	15.69 11.87	18.15 15.61	15.91 12.33	15.71 11.65	15.07 11.48	15.34 12.01	15.86 11.99	14.58 11.46	14 •96 11•62	16.77 11.78	16.21 12.39	26
27	16.01 11.96	15.60 11.97	18.26 15.85	15.87 12.13	16.08 11.78	15.40 11.55	15.61 12.25	14.74 12.12	16.42 11.23	16.87 11.40	16.54 11.78	16.21 12.66	27
28	15.92 11.81	15.72 12.05	18.10 15.22	16.11 12.15	15.81 11.48	15.22 11.40	15•92 12•45	16.03 11.71	16.70 11.24	16.82 11.42	16.29 11.87	16.12 12.17	2.8
29	15.61 12.05	15.59 12.01	17.93 14.71	16.30 12.21		15.94 11.52	16.05 12.48	16.27 11.56	16.97 11.39	16.73 11.41	15.95 12.04	15.96 12.00	29
30	15.39 11.96	15.75 12.00	17.81 14.38	16.46 12.23		15.58 11.79	16.09 12.03	16.66 11.59	17.14 11.47	16.45 11.40	16.15 12.50	15.75 11.77	30
31	15+67 12+19		17.70 13.81	16+66 12+40		15.95 12.16		17.12 11.72		16.13 11.48	16.18 12.61		31
MAXIMUM	16.58	16.58	18.26	18.02	17.20	16.50	16.61	17.12	17.14	16.95	16.89	16.43	MAXIMUM
MINIMUM	11.81	11.45	11,38	12.13	11.48	11.30	11.72	10.70	11.23	11,19	11.59	11.65	MINIMUM

8 ¹² 9 ¹² 20 ¹²

13 24 a ¹ 8

25 1 23

3

E - Estimated NR- No Record

*In order to machine process the data in this table, it was necessary to avoid degative gage heights. Subtract 10,00 feet to obtain recorder gage height.

	LOCATION	4	. Mu	XIMUM DISCH.	ARGE	PERIOD	OF RECORD		DATU	M OF GAGE	
	LONGITUDE	1/4 SEC T. & R		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	100	ZERO	REF.
LATI7UOE	LONGITUDE	M D 9.8.M	CFS	GAGE HT.	OATE	DISCHARGE		FROM	TO	GAGE	DATUM
38°04'25"	121*51*18"	SW27 3N 1E		9.2	4/6/58		June 29-Date	1929		+3.05	USGS

Station located 0.4 mi. SW of Collicsville, 3.3 mi. NE of Pittsburg. Maximum gage height does not iodicate maximum discharge.

TABLE 8-4 DAILY MAXIMUM AND MINIMUM TIDES *

		SUISUN 8A	Y AT BENIC	14			leel				E03300	1965	
OATE	OCT	NOV	DEC	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DATE
	NR NR	13.40	13.48 7.89	13.18 6.78	13.60	13.17	13.20 8.39	13.24	14.40	14.05	13.09 7.54	13.32	1
2	NR NR	12.92 7.66	13.82 8.03	15.45	12041	12017	13.38	13.35 6.40	14.15	130/9 6097	13.29	13.34	2
3	NR NR	12.90	12.66	13.90 7.16	13.30 7.23	13.20	13.37 7.89	13.47	13.00	13.34 7.30	13.29 8.57	13.19 8.35	3
4	NR NR	13.01	12.51	13.76 7.50	13.17 7.60	13.24	13.57	13.55	13.65	12.97	13.39 8.16	13.15	4
5	NR NR	13.10 7.45	12.34 6.29	14.22 d.17	13.16 8.13	13.10 8.11	13.67 7.60	13.21	13.02	13.20 8.00	13.38 8.28	13.28	5
6	NR NR	13.08 7.52	12.20	13.80 8.20	13.27 8.41	13.14 8.40	13.57 7.38	12./1 5.98	12.90 .05	13.22 8.37	13.39 8.02	13.25 8.03	6
7	NR NR	13.20	12.06	12.82 7.84	12.90 9.03	13.24 8.31	13.48 7.55	12.54 6.28	13.18 7.56	13.48 8.34	13.44 7.84	13.29 7.73	7
8	NR NR	13.29 8.20	11.94 6.66	12.36 8.11	12.92 8.85	13.27 8.09	13.90 8.30	12.29 6.46	13.27 8.12	13.67 8.12	13.44 7.59	13.31 7.81	8
9	NR NR	13.20 8.30	11.75 6.67	12•32 9•77	12.80 7.74	13:30 7:90	13.80 7.92	12.58 6.71	13.44 7.88	13.58 8.77	13.50 7.51	12.62 7.87	9
10	NR NR	11:23	13:86	12:55	17:23	13:28	13.28 7.52	12.86 7.03	13./4 /.59	13.55 7.64	13.54 7.50	13.43 8.04	10
- 11	NR NR	12.64 8.06	11.56	12.89	13.25	13.34 7.60	13+14 7+14	13.10 1.54	13010	13000	12.23	13.19 8.07	п
12	NR NR	12.40 8.36	11.37 6.70	13.74 8.58	13+47 6+36	13.64 7.47	13.34 7.41	13.32 7.64	12.11 7.12	12+24 7+45	13.37 7.45	13.00 8.21	12
13	N R NR	12.25 7.92	11.30 6.67	13.74 7.55	14.01 6.42	13.34 6.83	13.30 7.60	12.35 7.39	13.57 6.78	13.70 7.43	13.22 7.46	13.06 8.51	13
14	NR NR	12.26 7.56	11.91 7.17	13.92 7.00	14.25	13.60 7.04	13.47 8.15	ود.دا 88ه6	13,38	13+41 7+51	13.19 7.77	13.10 8.41	14
15	NR NR	12.29	12:34 6:95	14.38	14.26	13•78 7•20	13./6 8.20	13.26 6.62	13.4/ 6.60	13.35 7.69	12.90 7.95	13.38 8.53	15
16	12.20	12.92	12.81	14.35 6.14	13.86	13.54 6.97	13.51 7.69	13.25 6.46	13.54 6.63	13.30 7.87	12.79 8.22	13.48 7.97	16
17	12.24 7.62	13.17 7.57	13.10 6.30	14.45 6.11	13.51 6.69	13+14 7+09	13.03 7.32	13.24 6.49	13.35 8.32	1⇒•00 7•88	13.10 8.67	13.47 10.46	17
18	12•34 7•66	13.50 7.37	13.50 6.37	14.54 6.28	13.09 7.13	14+25 7+48	13.50 7.30	13.02 6.55	12.84 6.95	12.70 7.94	13.16 8.97	13.48 8.16	18
19	12.54 7.81	13.58 6.98	13.98 6.43	14.50 6.74	13.05 7.78	12.96 7.58	13.34 7.20	12,91 0,63	12.58 7.39	12.72 8.25	13.18 8.79	13.39 7.83	19
20	12.90 7.87	13.80 6.82	13.80 6.40	14.08 7.03	13.20 8.38	13.01 7.48	13.15 7.38	12.49 6.83	12.57 7.67	12.85 8.51	13.33 8.30	13.50 7.57	20
21	13.12 7.61	13.78 6.70	13.88 7.01	13.48 7.21	13.27 8.46	13.00 7.54	12.80 7.62	12.19 7.11	12.73 8.07	13.08 8.80	13.63 7.92	13.60 7.41	21
22	13.40 7.51	13.50 6.59	13.87 7.51	13.29 7.96	13.02 8.22	13.07 7.95	12.43 7.81	11.83	13.04 6.54	13.35 8.79	13.87 7.65	13.70 7.38	22
23	13.60 7.46	13.20 6.70	13.01 7.26	13.35 9.47	12.48 8.07	12.94 7.89	11.98 7.89	11.94 7.51	13.19 8.81	13.60 8.20	14.13 7.39	12.98 7.56	23
24	13.60 7.39	12.80 7.09	13.22 9.76	13•73 8•49	12.65 10.49	12.65 7.80	12.02 7.85	12.21 7.75	13.39 8.47	13.91 7.66	14.26 7.27	13.72 7.81	24
25	13•40 7•39	12.60 10.03	13.67	13.02 8.37	12.73	12.27 7.78	12.25 8.00	12.53	13.65 7.92	14.15 7.36	12.70 7.30	13.60 8.16	25
26	13.28 10.39	12.88 8.27	13.79 8.65	12.64	12.90 7.46	12.21 7.69	12.62 8.03	13.03 8.38	13.72 7.15	14.24 7.04	14.20 7.25	13.69 8.35	26
27	12.94 7.54	12.83	14.00 9.23	12.62 7.15	13.18 7.43	12.48 7.49	12.89 8.20	13.28 7.92	13.99 6.61	12.30	13.99 7.33	13.69 8.08	27
28	12.81 7.57	13.01 8.02	13.86 8.39	12.98	12.99 7.05	12.36 7.30	13.15 8.17	13.57 7.30	12.19 6.49	14,21 6,59	13,71 7,55	13.53 7.90	28
29	12.70 7.86	12.90 7.93	13,74 8,13	13.12 6.90		12.50 7.32	12.43 8.03	12.19 6.87	14.31 7.65	14.09 6.53	13.39 7.90	13.36 7.80	29
30	12.50	13.10 7.79	13.70 7.84	13.30 6.85		12.85 7.68	13•23 7•34	13.98 6.84	14.35 6.57	13.82 6.68	13:50 8:44	12.98 7.80	30
31	12.85		13.55 7.16	13.53 7.09		13•24 8•07		14.31 6.72		13.48 7.09	13.43 8.36		31
MAXIMUM	NR	13.80	14+00	14.54	14.26	14025	13.90	14.31	14.40	14.24	14.26	13.72	MAXIMUM
MINIMUM	NR	6.59	6.25	6.11	6.36	6.83	7.14	5.88	6.35	6 • 44	7.25	7.38	MINIMUM

STATION NO WATER

E - Estimated NR- No Record

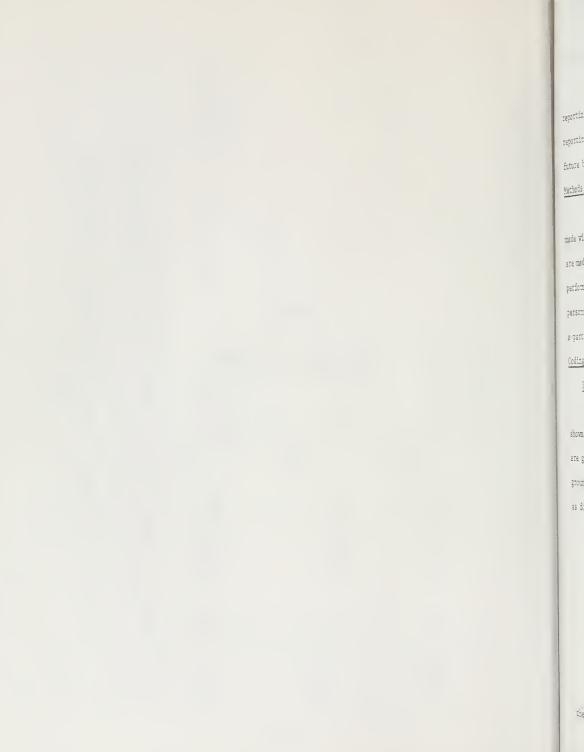
1110.N

1-1-1

* Io order to machine process the data in this table, it was necessary to avoid negative gage heights.

	LOCATIO	н	M.	XIMUM DISCH	ARGE	PERIOD	OF RECORD		DATU	M OF GAGE	
	LONGITUOE	1/4 SEC. T & R		OF RECOR	D	OISCHARGE	GAGE HEIGHT	PE	100	ZERO	REF
LATITUOE	LONGITUDE	мовам	CFS	GAGE HT.	DATE	UISCHARGE		FROM	TO	GAGE	DATUM
38°02°26"	122*08*44*	SW6 2N 2W		5.7	4/6/58	1	Jun 29-Apr 40 Apr 40-0ate		1940 1942	-2.21 -5.00 0.00	USCS USGS USGS
		ore aide of wharf, ted does not indic									

Period of record intermittent from 1929-1940.


B-5	
TABLE	

CORRECTIONS AND REVISIONS TO PREVIOUSLY PUBLISHED REPORTS OF SURFACE WATER DATA

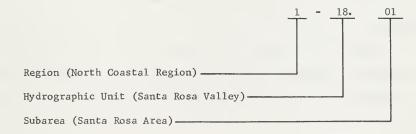
Change or Revision	: From : To		Published values 2.00 ft. lower than published values.	.962 16.72 14.72		lt 6.72 5.7	ıge 3/5/62 4/6/58		it 6.72 5.7	ge
kevision	: Item	1962	Daily Maximum and Minimum Tides for the period 3-1-62 to 3-28-62, inclusive.	Maximum for March 1962	1963	Maximum Gage Height of Record	Date of Maximum Gage Height of Record	1964	Maximum Gage Height of Record	Date of Maximum Gage
Location of Error or Revision	: Name		Suisun Bay at Benicia Arsenal			Suisun Bay at Benicia Arsenal			Suisun Bay at Benicia Arsenal	
I	Page		394			B=7			48	
	Report :	- 44 E E	5011. No. 23-62			Bull. No. 130-63			Bull. No. 130-64	

Appendix C

GROUND WATER MEASUREMENTS

INTRODUCTION

This appendix includes a figure, three tables, and one plate reporting on ground water conditions in the Central Coastal Area. The reporting period is from July 1, 1964, through September 30, 1965. In future bulletins the reporting period will be the water year.


Methods and Procedures

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gauge or an electric sounder. Field work was performed by local cooperators, the U. S. Geological Survey and Department personnel. An electronic computer program has been developed to perform a part of the processing and tabulating.

Coding

Region and Basin Numbers

The water pollution control board regions used in this report and shown on Plate 3, "Ground Water Basins or Units in the Central Coastal Area", are geographic areas defined in Section 13040 of the Water Code. Regions, ground water basins or units and subareas are listed by a numbering system as follows:

State Well Number

The state well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey.

-61-

It is the system used in all ground water investigations made by the Department of Water Resources. In this report, the number of a well, assigned in accordance with this system, is referred to as the State Well Number. Under the system, each section is divided into 40-acre tracts lettered as follows: Ground

Area,

change

Descri

basin which Level

agen

numh

Depa

Suni

"Ag

agi

D	С	В	A
Е	F	G	Н
M	L	K	J
N	P	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/12W-17K1,M would be in Township 16 North, Range 12 West, Section 17, Mount Diablo Base and Meridian, and would be further designated as the first well assigned a State Well Number in Tract K.

EXPLANATION OF FIGURES AND TABLES

Hydrographs

Figure C-1, "Fluctuations of Water Levels in Wells", presents hydrographs of 21 selected wells in 19 selected basins or areas. These wells were selected insofar as possible as representative of their respective basins or areas.

-62-

Ground Water Level Changes

artment

der

WS:

Table C-1, "Ground Water Level Conditions in the Central Coastal Area, Spring 1965", presents average depths to ground waters and average changes by basin and region from the spring of 1964 to the spring of 1965. Description of Selected Wells

Table C-2, "Description of Selected Wells", is arranged in region, basin, and well number order, and provides a description of 368 wells for which ground water level data are presented in Table C-3, "Ground Water Levels at Wells".

Agency Well Number

The agency well number is the number assigned to a well by any agency other than the Department of Water Resources in accordance with the numbering system used by that agency. Agencies that use the State well numbering system normally coordinate assignment of well numbers with the Department. These numbers, when common, are not shown in the "Agency Well Number" column; when different, the last five digits are shown in the "Agency Well Number" column.

Agency Supplying Data

Each number in this column is the code number for a cooperating agency. The agency code consists of a five-digit number, the first of which is a region number. Thus, 32100 refers to Agency 2100 in Region 3. Because of the limitations of punch card space, the agency code has been shown as a four-digit number without the region number. Therefore, the four-digit agency code should always be referred to the region in which the well is located.

-63-

The first digit of the four-digit agency code, as listed below, designates the type of well numbering system used by the agency.

region

Code	Well Numbering System
1	Location numbers
2	Monterey County Flood Control and Water Conservation District or Santa Clara Valley Water Conservation District
3	Serial numbers
4	Local numbers
5	State or U. S. Geological Survey
6	U. S. Bureau of Reclamation
7	South San Joaquin Irrigation District

The last three digits of the agency code, as listed below, are numbers that designate, within specified serial limits, the type of agency from which the data were obtained.

Code	Type of Agency
000-049	Federal
050-099	State
100-199	County
200-399	Municipal
400-699	District - Water, Irrigation, Conservation, etc.
700-999	Private

The agencies and code numbers assigned to them in each of the regions are listed in the following tabulation:

Agency Code	Agency
	North Coastal Region (No. 1)
5000	U. S. Geological Survey
5050	Department of Water Resources
	San Francisco Bay Region (No. 2)
2400	Santa Clara Valley Water Conservation District
5000	U. S. Geological Survey
5050	Department of Water Resources
5100	Alameda County Flood Control and Water Conservation District
5101	Napa County
5109	Solano County
5401	Alameda County Water District
	Central Coastal Region (No. 3)
2100	Monterey County Flood Control and Water Conservation District
2400	Santa Clara Valley Water Conservation Distric
5050	Department of Water Resources
5005	Post Engineer Fort Ord
5101	San Benito County
5102	Santa Cruz County
5117	San Luis Obispo County Flood Control and Water Conservation District
5200	Gilroy, City of
5400	South Santa Clara Valley Water Conservation District

The well use is indicated as follows:

Code	Well Use
1	Domestic
2	Irrigation
3	Municipal
4	Industrial
5	Injection or Recharge
6	Drainage
7	Domestic and Irrigation
8	Test, Monitor, Measurement
9	Stock
0	Unused

Grou

basi in W disc

Sele

SUIT

dati

sur

by

mea unl

> wai may re pu ga re De

Well Depth in Feet

Well depths shown were reported by the owner, obtained from a driller's log, or measured at the time of the well canvass.

Data Available

Under this heading, code numbers, as listed below, indicate the type of data that are available with respect to well logs, water analyses, and production records.

Data	Code
Log record	
Log	1
Confidential log (Sec. 7076, Water Code)	2
Water Analyses	
Mineral	1
Sanitary	2
Heavy Metals	3
Mineral and Sanitary	4
Production Record	
Available	1
Pump Test Available	2

Record Begins and Record Ends

The last two digits of the year the record began or ended are shown. Ground Water Levels at Wells

Table C-3, "Ground Water Levels at Wells", is arranged in region, basin, well number and date order. It includes measurements of depths to water in wells made from July 1, 1964, through September 30, 1965. Table headings discussed below are only those that were not discussed under "Description of Selected Wells".

Ground Surface Elevation in Feet

The numbers in this column give the elevation in feet of the ground surface from which depth to the water surface in the well is reported. The datum used is mean sea level, USC&GS datum, 1929. Elevations of ground surface are usually taken from topographic maps and the accuracy is controlled by topographic standards.

Date

The date shown in the column is the date on which the depth measurement, shown in the next column, was made. If the date of the month is unknown, it is indicated by 00.

Ground Surface to Water Surface in Feet

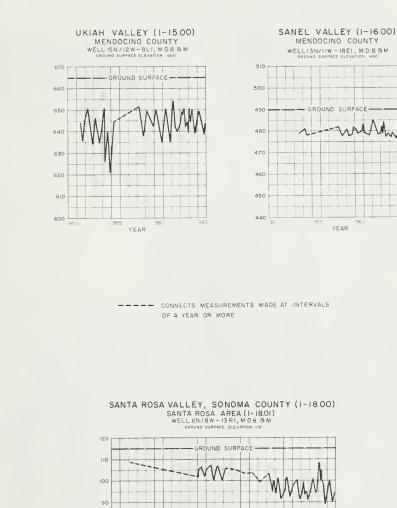
This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gauge measurement, or (f) recharge operations at well or nearby. The specific reason for any asterisk or any given measurement may be obtained from the Department of Water Resources.

-67-

Other symbols used are:

Measurement discontinued	+
Well destroyed	¥
No measurement for other reasons	Ş

Water Surface Elevation in Feet


This is the elevation in feet of the water surface in the well based on mean sea level, USC&GS datum, 1929. It was derived by subtraction of the depth measurement from the ground surface elevation. Negative values indicate elevations below datum.

The words FLOW and DRY are shown in this column to indicate a flowing or dry well respectively.

Agency Supplying Data

Each number in this column is the code number for the agency from which the water level data were obtained.

FIGURE CI FLUCTUATION OF WATER LEVEL IN WELLS NORTH COASTAL REGION

sed

te

⊻

A O

(0

8 6

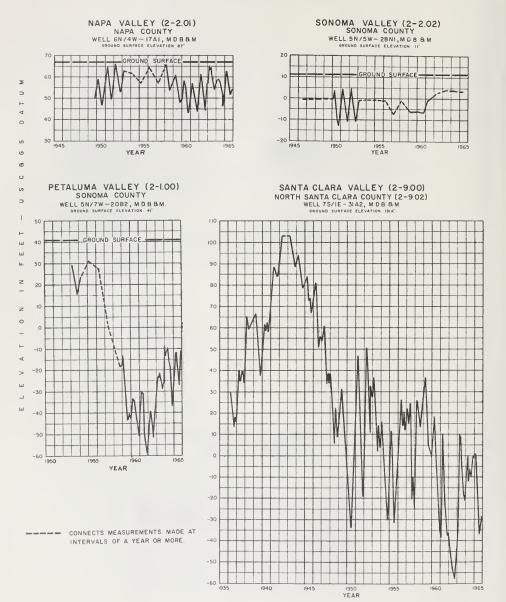
Q

S U

NFE

и 0

ΕVΑ

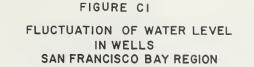

_

ш

-69-

FIGURE CI

FLUCTUATION OF WATER LEVEL IN WELLS SAN FRANCISCO BAY REGION



0

đ

ы

7

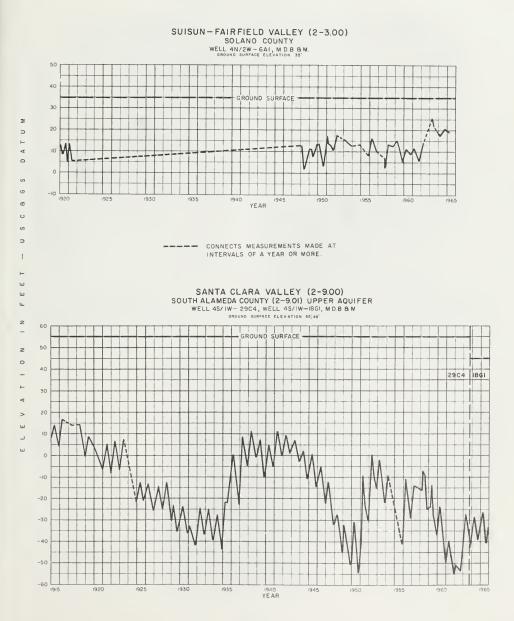


FIGURE CI FLUCTUATION OF WATER LEVEL IN WELLS

SAN FRANCISCO BAY REGION

Σ

6

li

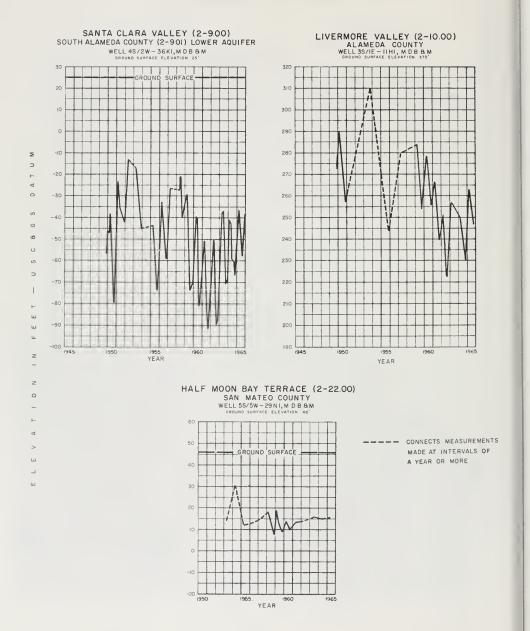
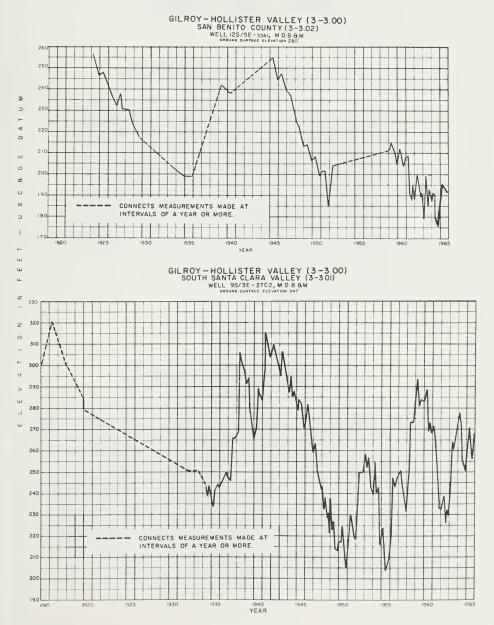
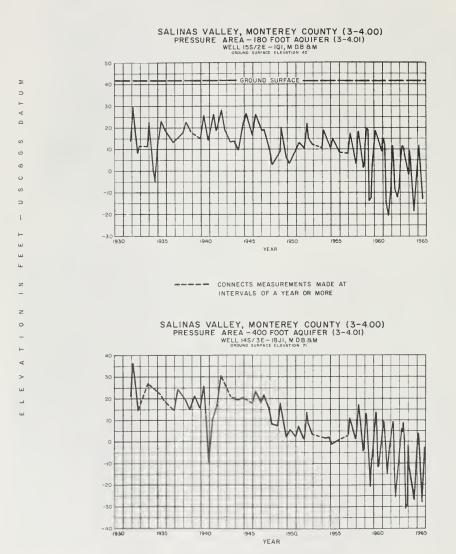
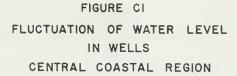
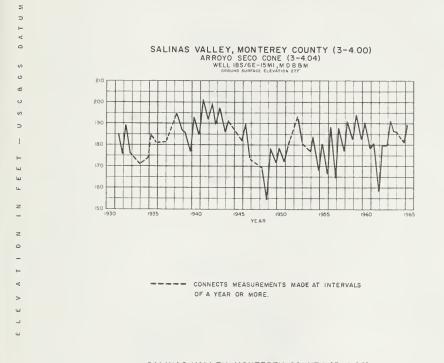



FIGURE CI FLUCTUATION OF WATER LEVEL IN WELLS CENTRAL COASTAL REGION

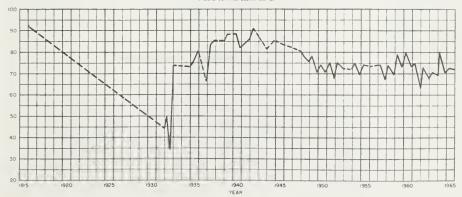
i OF

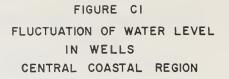

FIGURE CI FLUCTUATION OF WATER LEVEL IN WELLS CENTRAL COASTAL REGION

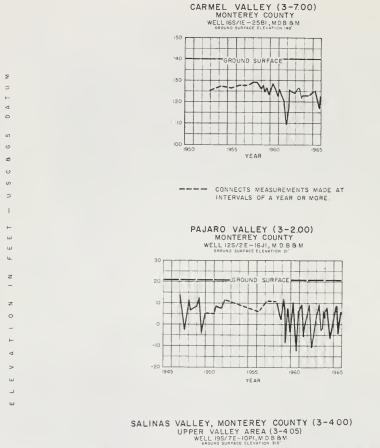

đ

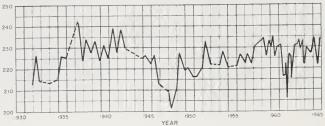

3

z


z







SALINAS VALLEY, MONTEREY COUNTY (3-4.00) EAST SIDE AREA (3-4.02) WELLISS/SE-17RI, M.D.84 Second Sufface Elevations in a

TABLE C-1 CROUND WATER LEVEL CONDITIONS IN THE CENTRAL COASTAL AREA SPRING 1965

Ground Water Basin	Basin	: Average Change : in Ground Water Level 1/	: Average Depth : to Ground Water		
or Unit	Number	Spring 1964 to Spring 1965 (in feet)	Spring 1965 (in feet		
or ente	Number	spring 1704 to spring 1909 (in reet)	Spring 1905 (In fee		
	Reg	tion 1			
Potter Valley	1-14.00	+0.1	7.2		
Ukiah Valley	1-15.00	+0.8	6.4		
Sanel Valley	1-16.00	+1.3	7.0		
Alexander Valley	1-17,00	+2.6	6.3		
Santa Rosa Valley	1-18.00	+1.3	13.1		
Santa Rosa Area	1-18.01	+1,2	12.8		
Healdsburg Area	1-18,02	+1.8	14.2		
Lower Russian River Valley	1-98.00	+1.3	12.3		
	Region 1 Averag	es: 2/ +1.3	10.3		
etaluma Valley	2-1.00	+2.3	21.1		
apa-Sonoma Valley	2-2.00	-0.2	14.5		
Napa Valley	2-2.01	-0.6	12.0		
		+0.4			
Sonoma Valley	2-2.02	1014	18.4		
	2-2.02	+3.3	18.4		
Sonoma Valley uisun-Fairfield Valley gnacio Valley					
uisun-Fairfield Valley gnacio Valley	2-3,00	+3.3	5.6		
uisun-Fairfield Valley gnacio Valley anta Clara Valley	2-3.00 2-6.00 2-9.00	+3,3 -0,5 -6,4	5.6 17.9 100.7		
uisun-Fairfield Valley gnacio Valley	2-3.00 2-6.00	+3.3 -0.5	5.6		
uisun-Fairfield Valley gnacio Valley auta Clara Valley Esat Bay Area South Bay Area	2-3.00 2-6.00 2-9.00 2-9.01	+3.3 -0.5 -6.4 +1.7	5.6 17.9 100.7 58.3		
uisun-Fairfield Valley gnacio Valley anta Clara Valley East Bay Area South Bay Area ivermore Valley	2-3.00 2-6.00 2-9.00 2-9.01 2-9.02	+3.3 -0.5 -6.4 +1.7 -11.7	5,6 17,9 100.7 58.3 128.0		
uisun-Fairfield Valley gnacio Valley anta Clara Valley East Bay Area	2-3,00 2-6.00 2-9.00 2-9.01 2-9.02 2-10.00	+3.3 -0.5 -6.4 +1.7 -11.7 +3.6	5.6 17.9 100.7 58.3 128.0 63.0		
uisun-Fairfield Valley gmacio Valley anta Clara Valley East Bay Area South Bay Area ivermore Valley alf Moon Bay Terrace	2-3,00 2-6.00 2-9.00 2-9.01 2-9.02 2-10.00 2-22.00	+3.3 -0.5 -6.4 +1.7 -11.7 +3.6 +0.5	5.6 17.9 100.7 58.3 128.0 63.0 20.4		

	Region 3		
Soquel Valley	3-1.00	+2,9	61.2
Pajaro Valley	3-2.00	+1.4	63.4
Cilroy-Hollister Valley	3-3,00	-3.4	70.0
South Santa Clara County	3-3.01 3-3.02	-1.3	40.6 84.1
San Benito County	3=3.02	an () a ()	04 .
Salinas Valley	3-4.00	+0.2	59.4
Pressure Area	3-4,01	+1.1	32.4
East Side Area	3-4.02	+0.7	126.5
Forebay Area	3-4,03	-0.5	44.9
Arroyo Seco Cone	3-4.04	+2.5	90.5
Upper Valley Area	3-4.05	+2.9	62,7
Paao Robles	3-4.06	-0.4	57.2
Corral de Tierra Area	3-4.10	-1.1	63.2
Carmel Valley	3-7.00	+0,7	17,9
West Santa Cruz Terrace	3-26.00	-2,6	33.4
	Region 3 Averages: 2/	-0.2	65.7

-0.7

Central Coastal Area Averages: 3/

53.2

1/ + indicates rise in water level. - indicates decline in water level.

 $\underline{2}$ / Region Averages - $\frac{\leq (basin average \times basin ares)}{\leq basin areas}$

 $\underline{3}$ / Central Cosstal Area Averages - $\frac{\underbrace{\xi \text{ (region average x region area)}}{\underbrace{\xi \text{ region areas}}}$

	WELLS	
TABLE C-2	SELECTED	
AB	0 F	
-	DESCRIPTION	

1964-65

A 001 A			54	58	50 64	54	50	64	54		50	51	6.4	94	53	64	54	54	54		58	51	61			
וא נכבע סבטנא אפרר חוצב אפרר אפרר		1-18.01	0 55	1 74	0 320	2 110	1 167	68 0	Z 1048	1-18.02	1 110	1 44	0E		2 53	28	2 15	2 19	285	1-44.00	120	47				
YON 30A SWIYJAQUZ ATAO			5050	5050	5050 (5050 2	0505	0005	5050		0005	0005	5 0005	5 000¢	5000 2	5000 1	5 000¢	2 0005	5000 0		£ 0005	5000 1	5000			
AGENCY WELL NUMBER		AREA								AREA				9N/9#+20J						VER VALLEY	0 7 10 0 1					
STATE WELL NUMBER		SANTA ROSA AREA	07N/08w=11M 1 M	07N/08**24H 2 M	07N/08W=31C 1 M	07N/09w= 1C 1 M	07N/09**35D 2 M	08N/09**36N 1 M	08N/09W=36P 1 M	HEALDSHURG A	W [dE +M60/N80	08N/09#*22L 1 M	09N/09#=20E 2 M	09N/09#=20K 4 M	09N/09**58N 1 M	09N/10#+12C 1 M	10N/10**220 1 M	10N/10w-26M 1 M	10N/10##35G 1 M	LOWER RUSSIAN RIVER VALLEY	01N/10M+ 6N 1 M	07N/11w=14E 1 M	08N/10*=29D 2 M			
Е И О 2 В Е С О В С В Е С О В О В Е С И 2 В Е С О В О			51	51		51	51		53	64	53		50	50	ŚŪ	51	53	52			45	42	54	1	+	1
VATER ALABLE WATER ALABLE PROD PROD PROD			37			2,	57			11	υn		50	un	'n	S	un	ç			t	\$	ŝ	51	54	51
IN FEET DEPTH WELL		1-14.00	35	12	1-15.00	62	190	1-16.00	52	5 5	135	1-17.00	180	4 ()	20	30	36	334	1-18.00	1-18.01	0	0	Ģ	28	149	133
WELL WELL WELL WELL																		ŝ	÷	-	120	250	166	10	~	-
AGENCY			1 0005	5000 1		5000 1	5000 2		1 0000	5 0004	5000 1		5000 2	1 0004	1 0005	1 0005	5 000c	5000 1 3	1-] =	5000 7 12	5000 1 55	91 \$ 050¢	8201 0 0505	1 1 0505	1 7 0202
AGENCY WELL	NURTH CUASTAL HEGION		5000	1 0004		5000 1			2 0004		I		~	1 0004	1	5000	~	1	1-	AREA 1-	1	-	2	0	Ţ	

DESCRIPTION OF SELECTED WELLS

.

1 1 1

ľ

			-			UT JELEUTEN WELLJ 1964-65	0					
STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY UPPLYING DATA WELL	IN EEET MELL MELL USE	DATA AVAILABLE WALABLE	ENDS BECORD BECINS ECCRD EC	STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY UPPLYING DATA	MEELE MEELE MEELE MEELE	1334 N	06 AVAILABLE	ENDS BECINS BECINS BECOND
SAN FRANCISCO	ISCO BAY REGION	-		d V M	-			5	-		A	-
PETALUMA VALLEY			2 = 01 • 00	00		NAPA VALLEY	*		2=	2-02.01		
03N/06w= 10 1 M		1 0203	225		50	05N/04w=12F 1 M		5101	1 203	3 2		50
05v/07m=19v 1 M		5050 1	180	2	50	05N/04#=12H 1 M	5/3-7E3	5101	7 478	10		64
05N/07W=208 2 M		6 0005	158		53	05N/04M-13H 1 M		5101	2 364	4		63
05N/07W=21H 1 M		1 0005	56		59	05N/04#=13H 5 W		5101	0 100	0		6 4
05N/07w=26R 1 M		0 0005	₩2.4		50	05N/04#=14C 1 M		1014	1 220	0		64
05N/07w=35K 1 M		5050 2	76		6*	05N/04W=15C 2 M		1015	7 6	66		51
NAPA-SONOMA VALLEY			2-02.00	00		05N/04w=15E 1 M		5101	7 158	8		62
NAPA VALLEY			2=02+01	01		05N/04w=19R 2 M	5/4-14J2	1014	1 108	30		50
04N/04W= 2L 1 M		5101 1			64	05N/04#=20R 2 M		5101	1 181	1		62
04N/04W= 4C 1 M		5101 1	80	\sim	62	05N/04W=218 1 M		5101	1 140	0		51
04N/04W= 58 1 M		5101 0	56		62	05N/04#=22M 1 M		5101	6 6	66		40
04N/04w- 50 2 M		5101 1	60		51	05N/04W=28R 1 M		5101	2 5	51 2		18
04N/044=12M 1 M		5101 1	27		49	05N/04#=59H 1 W		5101	4	45		62
04N/04#=14C 2 M		1 1014	9.0		62	06N/03W=318 1 M		1015	ĠIE 0	v) 0:		18
04N/04M=25K 1 M		1 1015	14		63	06N/03w=31F 1 M	6N/3w=3161	5101	0 465	ŝ		64
05N/03w= 5M 1 M		5101 T	130	2	63	06N/03#=31H 1 M		5101	2 330	0 2		64
05N/04w= 3G 1 M		0 1015	20		63	06N/03w=31N 1 M		1015	0 200	0		37
05N/04W= 46 1 M		1 1014	190	2	62	06N/03M=31N 2 M		51015	2 232	N		63
05N/04** 40 1 M		1 1014	100	2	62	06N/04W= 5R 1 M	6N/4W-4N1	5101	1 150	0		50
05N/04#= 5P 1 M		5101 2			62	06N/04W= 6L 2 M		5101	2 160	0		63
05N/04#= 5P 2 M		5101 1	4 0		62	06N/04#= 6N 1 M		51015	2 140	0		63
05N/04#=10F 1 M		0 1016	200	N	62	06N/04W- 6P 1 M		5101	2 12	20 2		64
05N/04w=11F 3 M		1 1012	165		51	06N/04W= 7N 1 M		5101	7 9	0.6		40
05N/04w=11M 1 M		1 0005	59	l	50	06N/04W- 8E 1 M		5101	13	32		64
						06N/04W-15G 1 M		5101	1 303	3		40

TABLE C-2 PTION OF SELECTED V

ō

2000

7 8 7

07N/00m=14N 1 3

	50N3 850080 860182 86080		64	49	4.9	63	6.4	64	4 9	¢ 6	49	64	4 F	52	64	64	63	43	63	Бð	63	6.4	63	63	5.4	62	63
	LOG AVAILABLE AVALABLE AVAL AVAL BBLE AVAL BBLE AVAL BBLE AVAL AVAL AVALABLE AVALABL	01					1				2		N		~												
	IN EEET DEPTH WELL	2=02 •	47	100	129	155	FEE	232	55	30	265	143	355	135	221	321	160	82	27	4 0	100	129	240	325	57	125	165
	AGENCY SUPPLYING DATA WELL WELL		5 1014	5101 1	5101 7	1 1010	5 1014	0 0005	1 1014	5 1014	5 1014	1 1014	5101 2	5 1014	1 1015	5101 1	1 1014	5101 1	5101 1	5101 2	5101 1	51012	0 1014	51012	5101 1	5101 1	5101 7
	AGENCY WELL NUMBER							16802			7/5=1461			7/5-1541					1×15-417								
	STATE WELL NUMBER	NAPA VALLEY	07N/05W= 5A 1 M	₩ 1 C9 -M50/N20	07N/05W= 8A 1 M	07N/05w- 8M 1 M	07N/05W- 90 1 M	07N/05W= 96 2 M	M E 06 -M50/NL0	07N/05w=10C 1 M	07N/05W=148 2 M	07N/05w=14J 1 M	07N/05w+15A 1 M	07N/05w=15F 1 M	07N/05w=16L 1 M	07N/05m-16N 2 M	07N/05w=178 1 M	07N/05w-178 2 M	07N/05w-21G 1 M	07N/05W=22E 3 M	07N/05w=22m 1 M	07N/05w=230 2 M	07N/05w-234 1 M	07N/05W=24P 1 M	07N/05w=25A 1 M	07N/05W-26D 2 M	07N/05w=34C 2 M
1964-65 J	SON3																						· · · ·				
-	BECORD BECINS BECORD		18	64	64	52	64	64	50	5 C	64	64	64	62	50	62	50	50	50	64	64	63	64	64	64	63	6*
	AVAILABLE AVAILABLE WATER ABLE ANAL	01		1 1		~			2	2		2		2							N		Q.				
	וא גננז סנפוא אנרר	2-02.01	76	250	100	125	21	125	700	150	120	06	112	104	100	290	260	190	525	<i>در</i>	171	31	272	150	125		ះ ហ
	ATAD J.J.W J.SU J.SU		-	0	0	~	7	٦.	N	1	-	0	1	0	1	1	-	2	1	1	-	0	0	1	0	7	-
-	SUPPLYING		1014	0005	1014	1015	1015	1019	5101	1014	5101	1014	5101	5101	5101	1015	5101	5101	5101	5101	5101	5101	5101	5101	1014	1015	5101
	AGENCY WELL NUMBER																										
	STATE WELL NUMBER	NAPA VALLEY	06N/04w=16P 1 M	06N/04W-17A 1 M	06N/04#-18A 2 M	06N/04W=198 1 M	06N/04#=21G 1 M	06N/04#=22P 1 M	06N/04#=23J 1 M	06N/04#=26N 1 M	06N/04W=27N 1 M	06N/044-28K 1 M	06N/04#=298] M	06N/04W=30C 1 M	06N/04#=32J 6 M	06N/04M-32L 2 M	06N/04W=35G 3 M	W E 75E-#40/N90	M I M9E-M40/N90	06N/05w-12R 1 M	07N/04w-30L 1 M	M I W0E=##0/NLD	07N/04*-31E 1 M	07N/04W-328 2 M	07N/05w= 36 1 M	07N/05W- 36 2 M	07N/05W- 4R 2 M

TABLE C-2 DESCRIPTION OF SELECTED WELLS 1964-65

DESCRIPTION DESCRED WELLS

王 N 39 1860、Zトロ 王 N 24 1860、Zトロ		1 1014	e 13	n 3 7 0 4	2 1 452=350/140 2 1 452=350/140 2 1 0 47=350/140 2 1 0 47=350/140		I TOTS	125 125 1251 1251	F0 F0
			DESCRIPTION	TABL OF 1964	E C-2 SELECTED WELLS 1-65				
STATE WELL NUMBER	AGENCY WELL NUMBER	WELL WELL WELL DATA DATA DATA	нтер ни гест ни гест	Е ИОЗ ВЕ СОВО ВЕ СОВО ВЕ СОВО ВЕ СОВО В ВЕ СОВОВО В ВЕ СОВОВОВО В ВЕ СОВОВО В ВЕ СОВОВО В ВЕ СОВОВО В ВЕ СОВОВОВО В ВЕ СОВОВО В ВЕ СОВОВО В ВЕ СОВОВО В ВЕ СОВОВОВОВО В ВЕ СОВОВОВО В ВЕ СОВОВОВОВОВОВО В ВЕ СОВОВОВОВОВОВО В ВЕ СОВОВОВОВОВОВО В ВЕ СОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ	STATE WELL NUMBER	AGENCY WELL NUMBER	AGE NCY AFE NCY DATA DATA DATA DSE		А 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
NAPA VALLEY			2-02-01		SONOMA VALLEY			2-02.02	1
074/05W=35F 2 M		5101 0	100	30	05N/05w-17C 1 M		1 000<	7.0	50
07N/05#-36N 1 M		51017	104 2	64	02N/05#=58N 1 W		5 0502	130 1	0
08N/05w=30P 1 M		5101 2	46	49	05N/05W-29N 1 M		5 000c	100	1 c
08N/05w=31H 1 M		5101 1	9¢	6 4	05N/05W-30J 3 M		5000 1	90	50
08N/05W=31P 2 M		5101 1 1	175	4.9	SUISUN+FAIRFIELD VALLEY	VALLEY		2-03 00	
08N/05#=31R 1 M		5101 2 4	438	٤٩	04N/02w= 6A 1 M		0 VUI¢	6E	20
08N/06#= 3M 1 M		5101 1	130	64	04N/02W- 9A 1 M		0 0905	37	10
08N/06w= 4F] M		51019 2	207	64			6 050c	180	50
08N/06W= 6L 4 M		5 1 1014	253	Ēð	1 01		5109 1	67	18
08N/06W= 90 2 W		51012 3	360	Ęq	364 1		5109 9	96	- 62
08N/06W= 9H 1 M		5101 1 2	210	63	05w/01w= 7E 1 M		6 601c	56	10 \$
08N/06#= 9M 2 W		5101 1		64	412		1 0504	204	64
08N/06#=10G 1 M		5000 9 1	184 1	6.4	05N/02W=25R 1 M		5050 0	20	0 †
08N/06#=14N 1 M		5101 1 1	162	40	05N/02#=27J 2 M		0 0004	60	5.5
08N/06#=140 I M		1 1014	22	40	-			120	54
08N/06#=23M		5101 1 1	EII	0.4	05N/02W-301 1 M		5000 2	220	5.4
08N/06w=248] M		5101 1 1	106	6 4	YGNACIO VALLEY			2-06.00	
08N/06w=25G 2 M		1 1 1015	186	0.4	01N/01w- 7K 1 M		1 0504		n
09N/06w=310 1 M		5101 1	51	40	01N/02w=11N I M		5050 1	81 2	Σα
09N/06w-32M 1 M		5 1 1013	205	54	-		1 0505	-	r v
09N/07#=24L 1 M		5101 1 2	224	63	-		1 0.404		a G
09N/07W=25N 1 M		5101 1 1	149	4.7	• •				2 3 1 1
09N/07#=55N 5 M		5101 0	27	64	-			40	on
09N/01#=56P I W		5101 0 4	470 Z	54					
09N/07w=35K 1 M		5101 0 1	100 2	49					

STATE WELL NUMBER AGENCY WELL NUMBER SANTA CLARA VALEY AGENCY WELL NUMBER SANTA CLARA VALEY AGUE HAYWARD FAULT EAST BAY AREA ABOVE HAYWARD FAULT BASTORWARD FAULT OSS/OLW-35P 3 M OSS/OLW-19J 1 M OSS/OLW-26V 2 M OSS/OLW-26V 2 M OSS/OLW-26V 2 M OSS/OLW-36V 1 M OSS/OLW-30 2 M OSS/OLW-26V 3 M OSS/OLW-30 1 M OSS/OLW-26V 4 M OSS/OLW-30 1 M OSS/OLW-30 2 M OSS/OLW-30 1 M OSS/OLW-30 2 M OSS/OLW-30 1 M OSS/OLW-30 1 M OSS/OSW-304 M OSS/OSW-304 M OSS/OSW-204 M	No No	2-09.01 2-09.00 2-09.01 2-09.01 2-09.01 400 2 2-09.01 156 87 87 87 87 87 87 87 87 87 87	S0H3 → 0503A 20039 20039 20039 2003	STATE WUMBER SOUTH BAY AREA 065/01E-7E 1 M 065/01E-23P 2 M 065/01E-23P 2 M 065/01E-23P 1 M 065/01E-21E 1 M 065/01E-21E 1 M 065/02W-35C 1 M 065/02W-35C 1 M 075/01E- 1K 1 M 075/01E- 1BL 1 M 075/01E-16C 5 M 075/01E-16C 5 M 075/01E-21C 2 M 075/01E-21C 1 M 075/01E-21C 1 M 075/02E-7P 1 M 075/02E-7P 1 M 075/02E-7P 1 M	AGE NCY WELL NUMBE R 6 C 059 8 D 342A 8 C 127 7 E 084 4 F 030 9 D 180A 8 F 274 8 F 274 8 H 117 10 D 403 11 D 304 11 D 304 4 H 023A	Астиски с с с с с с с с с с с с с с с с с с	2 2 2 2 2 2 2 2 2 2 2 2 2 2
M E N3E=WE0/SE0 M i 02==20 i	5100 4 5401 2	350 475	58 50			N 61 6	36 36 36
n - N		1 1 2 2 4 7 5 2 4 7 5 2 4 1 2 2 4 1 2 2 4 1 2 2 2 4 1 2 2 2 2	6 9 6 0 0 9 6 0	4B 1 22A 1 7H 2 13H 1	с н н	2 2 7	36 35 36

TABLE C-2 DESCRIPTION OF SELECTED WELLS 1964-65

DISCRIPTION OF SLIL CTED WELLS

	А А А А А А А А А А А А А А	0	53	53	0	58	58	53	53	60	0	53	53	53	58	53										
	лэ л нтяза и FEET	2-22,00		85	2-24.00	4.5	85				2-26.00		25	20	40	36										
	MELL DATA DATA DATA		5050 2	5050 2		5050 0	5050 2	5050 7	5050 1	5050 1		5050 2	5050 1	5050 1	5050 1	5050 1										
	AGENCY WELL NUMBER	RACE			EY																					
OF SELECTED WELLS 1964-65	STATE WELL NUMBER	HALF MOON BAY TERRACE	05S/06W-10J 1 M	06S/05W- 8B 1 M	SAN GREGORIO VALLEY	07S/05W-13E 1 M	07S/05W-15C 1 M	07S/05W-15E 1 M	07S/05W-15E 2 M	07S/05W-15H 2 M	PESCADERO VALLEY	08S/05W= 9H I M	08S/05W-10K 1 M	08S/05W-11F 1 M	08S/05W-11K 2 M	08S/05W-11M 1 M										
DESCRIPTION OF SEL 1964-65	001 001 001 001 001 000 000 000 000 000		40	36	36	37		48	4.8	649	48	48	48	67	61	49	48	48	49	53		63	53	60	53	53
DE	ГОС	2-09.02			135	114	2-10.00	360		287 1		353	187	303	310	395	437 1	376	540	500	2-22,00		69		82	
	סאזא אינינ שנינ		00	00 7	2400 7	2400		2	00	0	00 2	2	00 2	7	ŝ	e	2	2	0	0		50 2	5050 0	5050 1	50 2	20 0
	AGENCY AGENCY		2400	2400	24(24(5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5 100	5 100	5100		5050	505	505	5050	5050
	AGENCY WELL NUMBER		13 G 297A	13 F 233	15 G 238B	15 G 279															CE					
	STATE WELL NUMBER	SOUTH BAY AREA	08S/02E-20F 3 M	08S/02E-22D 1 M	09S/02E- 1J 1 M	09S/02E- 1M 1 M	LIVERMORE VALLEY	02S/01W-26C 1 M	02S/02E-25N 1 M	03S/01E- 7Q 1 M	03S/01E- 8J 2 M	03S/01E- 9R 2 M	03S/01E-10Q 2 M	03S/01E-11H 1 M	03S/01E-17R 1 M	03S/01E-19A 3 M	03S/02E- 2R 1 M	03S/02E-10H 1 M	03S/02E-16E 2 M	03S/02E-19D 1 N	HALF NOON BAY TERRACE	M I 161-M20/058/058/058/058/058/058/058/058/058/05	05S/05W-20L 1 N	05S/05W-29F 4 N	05S/05W-29N 1 M	05S/05W-32K 1 M

-83-

e 2

0487016-1301 1 M 12 C 257 0487019-150 1 M 8 1 120

2

Z - IP | B- 2 (0))

TABLE C-2

ЕКОЗ ВЕСИКОВО ВСОВО ВСОВО ВСОВОВО ВСОВОВОСНОВОВОВОСНОВОВОВОСНОВОВОСНОВОВ		3-03.01	300 4.3	170 48	375 58	195 2 48	263 2 48	472 2 57	350 60	253 2 60	6.3	184 48	328 2 64	447 448	57	701 2 32	470 2 4/	346 56	302 2 60	60	3-03.02	125 37	736 1 49	108 4.9	63
₩ELL WELL DATA DATA DATA DATA DATA			2400 7	5050 0	2400 7	2400 7	2400 7	2400 2	5050 7	5050 0	5050 1	5050 7	5200 3	5050 2	5400 2	5200 3	5200 3	5200 3	5200 3	5050 1		5050 2	5101 2	5050 0	5050 0
AGENTY WELL NUMBER		LARA COUNTY	374		18-II-375A	18-11-380	19-6-378	19-C-495													A.LND				
STATE STATE WELL M.MBER		SOUTH SANTA CLARA COUNTY	09S/03E-27C 2 M	09S/03E-29B 1 M	09S/03E+34D 2 M	09S/03E+34Q I M	09S/03E-36E 2 M	09S/03E-36F 3 M	10S/03E- 2K 3 M	10S/03E-13J 3 M	10S/03E+36E 3 M	10S/04E-18C 2 M	10S/04E+31G 4 M	10S/04E-35E 1 M	11S/03E- 1B 1 M	11S/04E- 6B 1 M	11S/04E- 6D 1 M	11S/04E- 6H 1 M	11S/04E- 6P 2 M	11S/04E- 8K 2 M	SAN BENITO COUNTY	11S/05E-13D 1 M	12S/04E-20C 1 M	12S/05E-10R 1 M	12S/05E-12M 4 M
			4.8	4.8	63	4.8		62	Z 47	4.7	4.7	4.7	4.7	58	4.7	4.7	4.7	4.7			48	48	48	48	48
END END ECO ECO ECO ECO ECO ECO END ECO END ECO END ECO END ECO END ECO END ECO END ECO ECO ECO ECO ECO ECO ECO ECO		3-01.00	0 48	2 48	0 102 63	0 48	3-02.00	7 250 62	2 200 4.7	7 47	2 47	2 219 47	7 47	225 58	0 122 47	2 198 47	2 350 47	2 192 2 47	3-03.00	3-03.01	2 400 48	2 225 48	2 340 48	2 420 48	48
нест нест		3-01.00			102		3-02.00	250		5050 7 47		219	2100 7 47		122	198	350	192 2	3-03.00	3~03.01	4.00	225	340	420	2400
END END ECO ECO ECO ECO ECO ECO END ECO END ECO END ECO END ECO END ECO END ECO END ECO ECO ECO ECO ECO ECO ECO ECO	CENTRAL COASTAL REGION	3-01.00	0	2	0 102	0	3-02.00	7 250	2 200	7	2	2 219	7	225	0 122	2 198	2 350	2 192 2	GILROY-HOLLISTER VALLEY 3-03.00	SOUTH SANTA CLARA COUNTY 3-03.01	2 400	2 225	2 340	2 420	

TABLE C-2 DESCRIPTION OF SELECTED WELLS 1964-65

-84-

1285 (24 (36. H) - 12. 27 (24 4

1.1.00 1.101 1.00

DESCRIPTION TARTER WELLS

1 1 1

	А С С С С С С С С С С С С С С С С С С С		31																							
	IN EEET OEPTH WELL	3-04.05		3-04.06																						
	USE WELC SUPPLYING DATA DATA		2100 2		5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117	5117
	AGENSY WEELL NUMBER	REA	12K 003																							
ABLE C-2 OF SELECTED WELLS 1964-65	STATE STATE WELL NUMBER	UPPER VALLEY AREA	22S/10E-16K 1 M	PASO ROBLES	24S/10E-11C 1 M	24S/11E-25N 1 M	24S/11E-33R 1 M	24S/11E-35J I M	24S/12E-17N 1 M	24S/15E-33C 1 M	25S/11E-35G 1 M	25S/12E-17J 1 M	25S/12E-17R I M	25S/12E-26K 1 M	25S/13E-11E 1 M	25S/16E-17L 1 M	25S/16E-30M 1 M	26S/12E- 4N 1 M	26S/12E-26E I M	26S/12E-35M 1 M	26S/13E-10D 1 M	26S/13E-34B 1 M	26S/14E-16L 1 M	26S/14E-35D 1 M	26S/15E- 2B 1 M	26s/15E-28Q 2 M
	238 2003 200338 200338 200338 200338 2003 238 2003 238		24	63	24			31	16	31	31	31	31		31	31		16		31	44		31	16	16	31
DESCRIPTION	• есст • есс	3-03.02	150	203	44	3-04,00	3-04.01		176	196 1		279 1		3-04.01	500 1	513 1	3-04.02	299	3-04.04	288 1	320	3-04+05	245	372		
	DISE METE DIATA DETA DETA		5050 2	5050 2	5101 0			2100 2	2100 2	2100 7	2100 2	2100 2	2100 1		2100 2	2100 2		2100 2		2100 2	2100 2		2100 2	2100 2	2100 2	2100 2
	AGENCY WELL	λIN					PRESSURE AREA 180 FOOT AQUIFER	02B 001	02C 025A	020 023	03D 040	04D 056	04E 030D	400 FOOT AQUIFER	01B 0 1 1A	02C 119		05E 026	NE	076 029	07H 036	AREA	08H 031	001 007	100 L01	11K 002
	514.5 514.5 € € 10 8 × 10 10 10 10 10 10 10 10 10 10 10 10 10 1	SAN BENITO COUNTY	12S/05E-33A 1 M	12S/05E-35N 2 M	13S/05E-11Q 1 M	SALINAS VALLEY	PRESSURE AREA	14S/02E- 3C 1 M	14S/02E-15L 1 M	15S/02E- 1Q 1 M	15S/03E-16M 1 M	15S/04E-33A 1 M	16S/04E-11D 1 M	PRESSURE AREA	13S/02E-31Q 1 M	14S/03E-18J 1 M	EAST SIDE AREA	16S/05E-17R 1 M	ARROYO SECO CONE	18S/06E-15M 1 M	19S/06E-11C 1 M	UPPER VALLEY A	19S/07E-10P 1 M	20S/08E- 5R 1 M	21S/09E- 6K 1 M	215/10E-32N 1 M

-85-

	WELLS	
TABLE C-2	DESCRIPTION OF SELECTED	1964-65

S*A'E ¥EL	AGENCY WF NUMBER	96.407 974 974 055.407 920 320	0ATA VALABLE VALABLE E. J. D	STATE WELL	AGENCY WELL NUMBER	2000 2000 2000 2000 2000 2000 2000 200	TA ABLE
			V	NUMBER			38 10
PASO ROBLES			3-04.06	CARMEL VALLEY		3-07.00	
26S/15E-29N I M		5117		16S/01E=22E 1 M		2100 2	58
27S/12E-21N 1 M		5117		16S/01E-23F 1 M		2100 2	58
27S/13E-24N 1 M		5117		16S/01E-25B 1 M		2100 7 60	5.2
27S/13E-32B 1 M		5117		WEST SANTA CRUZ TERRACE	TERRACE	3-26.00	
27S/15E-10R 2 M		5117		11S/02W-22K 1 M		5102 2	54
27S/15E-13A 1 M		5117					
27S/16E-21E 2 M		5117					
28S/12E-10G 1 M		5117					
28S/12E-10R 2 M		5117					
28S/12E-13N 1 M		5117					
28S/12E-14G 1 M		5117					
28S/13E- 4K l M		5117					
28S/13E- 4K 2 M		5117					
28S/14E- 7E 1 M		5117					
28S/16E-23M 1 M		5117					
29S/13E= 5F 3 M		5117					
29S/13E- 5K 2 M		5117					
29S/13E= 6A 1 M		5117					
29S/13E-19H 1 M		5117					
SEASIDE AREA			3-04.08				
14S/02E-31M 1 M		5005 3	258 2				
15S/01E-14N I M		5005 2	750 2				
CARMEL VALLEY			3-07.00				
16S/01E-16L 1 M		2100 1	61				
			GROUND WATER LEVELS	VELS AT WELLS		-	
F	1	GROWIN SUM	WATPR SUBSECT	T P. WOLL	DROLMIN DATE DATE	The set of	NATER NUPELYMO

TABLE C-3 GROUND WATER LEVELS AT WELLS

AGENCY SUPPLYING DATA			5000					0.0.0	0005																0000													0005				
WATER SURFACE ELEVATION IN FEET		8	64403	646. l	644°C	2 * U * U	639.6	0.000	2°47	50. 50. 50. 50. 50. 50. 50. 50. 50. 50.	592.4	544.5	500.3	140°C	1 4 0 4 0 U	595.1	593.6	593.5	595.2	0.44°0		00					476.8	479.1	A 10.4	480.1	479.1	400.0		417.7	n • +			412.1	470.2	1 1 9 2 4	400.0	
GROUND SUR- FACE TO WATER SURFACE IN FEET		1-15.00	20.7	18.9	21.0	1.10	4.0.2		5 ° 4	2.5	7.6	5.5	y e ,	0 U	ດ. ເ	- 0 - 1 - 1	6.4s	6°7#	4°	• •	0.1	1-16.00			A 1	n ≠	13.2	6.01	11.1	10.0	10.9	9.4#	чя	12,34	ac • 21	- 4	A	15.4	H . T I	14.6	18.8	
DATE	NOIDI		4=14=65	5-18-65	6=15=65 2 5 5 5	CO-FI-/	9-19-65		7=14=64	8 - 1 X - 6 4 2 - 1 7 - 6 4	10-13-64	11-17-64	12-15-64	CO=61=1	2-10-03	4-14-65	5-14-65	6=15=65	7=13=65	8=18=65	Co-17=6				7-14-64	0-15-04	10-13-64	11-17-64	12-15-64	2=16=65	3=16=65	4=14=65	5=18=65	6-15-65	1=13=05	8-18-65	60-17-6	7=14=64	H=17-64	0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	10-13-64	
GROUND SURFACE ELEVATION IN FEET	NORTH CUASTAL REGION		665.0						600•0																0°0,04													4 4 4 . 0				
STATE WELL NUMBER	NON	UKIAH VALLEY	15N/12W- 8L 1 M						15N/12w-35M 1 M													SANEL VALLEY			13N/11#=18E 1 M													M 1 00 [m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
AGENCY SUPPLYING DATA				0005													5000																5000									
WATER SURFACE ELEVATION IN FEET		00		952.6	954.2	953.8	744°0			3 7 3 4	404°0	5.454	954°9	954.0	954.6	A 0 4 0 4	994°4	895.0	0.643	891.1	894.0	1	5°668	892.8	892°8	041.00	C. [78	691°5	8°168	00	2		641.2	640°Z	639°7	638.9	641°A	640°U	0.44° 0	0440		
GROUND SUR- FACE TO WATER SURFACE IN FEET		1-14-00		2.40	99 °	1.2	0 • A	9 HB	10	نا 99	• • •	1 30	• 1	1.0	• •	•1•	°,	0.0	2 • 0	5°0	1.0		1 U 1 1 1	2.2	2.2		5 ° ° °	3.5	3.2	1-15.00			23.8	24.8	25°3	26.1	23.1	19.0	19.1	0.07	0.022	
DATE	EGION			7-14-64	8=18=64	9=15=64	10-13-04	12-15-64	1-19-65	2=16=65	0=10=00 ♦=10=00	5=18=65	6=15=65	7-13-65	8-18-65	G0=E2=6	7-14-64	8=10=64	9-15-64	10=13=64	11-17-64	10-01-21	0=10=000	3=16=65	4=]4=65		29-51-0	8-18-65	9-23-65				7-14-64	8=18=64	9-15-64	10-13-64	11-17-64	12-15-04	CO=6[=]	C0=C1=Z	C0-07-0	
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION			955.0													895°0																665.0									
STATE WELL NUMBER	40M	POTTER VALLEY		17N/11#-18J 1 M													17N/11#=32J 1 M													UKIAH VALLEY			15N/12w- HL 1 M									

AGENCY SUPPLYING DATA			5000	5000												0005											5000									
WATER SURFACE ELEVATION IN FEET		0 0	209.1	191.4	185.4	182.2	186.0	189.8	202 4	202.5	203.1	194.6	193.2	186.7 186.1		171.6	171.6	171.2	174.7	173.8	177.0	174.2	176.0	172.6	172.0	172.6	292.2	292.2	292.0	3.900	0.4400	300.6	296.4	0 4 4 0 0 0 0 0 0 0	297.0	292. H
GROUND SUR. FACE TO WATER SURFACE IN FEET		1-17-0 0	20.9	13.6	19.6	22.8	18.2	15.2	 N	2 2 2 2 2 2	1.9	10.2*	11.8	16.3		8.4	N 0 20 1	9 9 9 9 9 9	5.3	6.2	ວ 4 ຕໍ່	5.8	0 ° • 1	 	8.0	3° 1	12.8	12.8	13.0	4 U U	10.8	4 • 4	8.6	10.4	0.4	12.2*
DATE	EGION		9=21=65	7-14-64	8-18-64	9-15-64	11-17-64	12-15-64	1-19-65 2-16-65	3-16-65	4=14=65	6-15-65	7-13-65	8-18-65 9-21-65		7-14-64	8-18-64	10-13-64	11-17-64	12-15-64	3-14-45	3-16-65	4-14-65	6-14-65	7=13-65	8-18-65 9-21-65	7-14-64	8-18-64	9-12-64	10-13-64	12-15-64	1-19-65	2=16=65	34-91-5	5=17=65	6-15-65
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION		230.0	205.0												180.0											305.0									
STATE WELL NUMBER	10N	ALEXANDER VALLEY	10N/09W-18B 1 M	10N/094-26L 2 M												10N/09#=33C 1 M											11N/10w- 8P 1 M									
AGENCY SUPPLYING DATA			5000								0005															2000										
WATER SURFACE ELEVATION IN FEET		00	8°174	419.0	479.0	478.2	478.7	476.5	5°1/5	464.9	506.6	503.1	502.0	502.505	510.2	510.5	510.2	510.2	0.014	8.605	9.104	505.9		3			210.1	212.4	211.9	215.7	n.*12	214.1	212.9	209.5	5 010	C*013
GROUND SUR. FACE TO WATER SURFACE		1-16.00	10.2	10°0 8°3	9.0	10 m 2 1	n m • o • o	11.5	1 4 • 5	18.1	H . 4	11.9	13.0	5.6	19 ° 17	¢ ه ¢	10 × 10	t 0 1	5.0	5.2	1.4	12.1		m •↓T≈T		s9 ⊮9	19.9	17.6	14.1	14°3	1.71	6.51	17.1	20.5	4 0 I	
DATE	REGION		11-17-64	1-14-65	2-16-65	3-16-65	5-1/-65	6-15-65	20-51-1	9-20-65	7-14-64	8-17-64	9-15-64	10-13-04	12-15-64	1-19-65	2-14-45	4=14=65	5-11-65	6-15-65	7-13-65	69-17-6				7-14-64	9-15-64	11-17-64	12-15-64	1-19-65	2=10=00	4-14-65	5-17-65	6=15=65	1-13-01-1 8-11-6	
GROUND SURFACE ELEVATION IN FEET	H COASTAL		488.0								515.0															230.0										
STATE WELL NUMBER	NÜRT	SANEL VALLEY	M I 901-WII/NEI								13N/114-206 1 M												ALCVANDED VALLEV	ALEANNER VALLE		W I ARI-MAO/NOI										

UNITATION AUM WAIPH AGENCY

C. NUMBER

GROUND WATER LEVELS AT WELLS

TABLE C-3

		WATER ACENCY SURFACE SUPPLYING ELEVATION DATA IN FEET			61.2 5000 81.6	41.6 31.2	2 - 2 - 2	67°5	5000		90.6 89.2	1.7	5.5	18.7 10.2	0.6	6.3	4.4	0.2	82.2 5050	75.3 5050	·56.3 5050	267.0 5050	52.8 5050	76.4 5050	5050	65.4 5050	102.0 5050	
4 0 4 2 0 2 2 1 4 0 4 2 0 5 2 1 4 0 4 2 0 5 1		CROUND SUR. FACE TO WATER SURFACE IN FEET		1-16.01	13.6 13.6 5.8						25.8 E 3								12.8 B	19.7 7	8.7 45	8.0 26	7.2 15	13.6 17	*	24.6 6	33.0 10	
1 = 1 0 = 00 2 = 00 2 = 1 0 = 00 2 = 0		DATE CRC	IEGION		1=18-65 2=15=65 3=16=65									2-15-05 3-16-65					3=22-65	3=22=65	3-24-65	3=23=65	3-22-65	3=23=65	3-23-65		3=22=65	
		GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION	REA	95.0				115.0										95°0	95.0	465.0	275*0	160.0	190.0	0	9.04	135.0	
	C-3 EVELS AT WELLS	STATE WELL NUMBER	NOF	SANTA ROSA AREA	06N/08W- 7P 2 M				06N/08w=13R 1 M										06N/08w=15J 3 M	06N/08w=15R 1 M	07N/06w=19N 1 M	07N/07w= 6R 1 M	07N/08w=11m 1 m	07N/084-24H 2 M	07N/08w=31C 1 M	07N/09w= 1C 1 M	07N/09w=350 2 M	
	TABLE C-3 WATER LEVELS	AGENCY SUPPLYING DATA			5000	0005									0005											5000		
9.0 5 10 5 10 5 10 1 10 1	GROUND V	WATER SURFACE ELEVATION IN FEET		0.0	292.1 292.7 292.6		281.0	263.7 263.7	283.2 286.8	284.4	284.0	281.9	261.3	260.9	337.1	334,8	328.7 4 445	340.5	342.6	10°247	347°4	0.045 0.956	336°3 334°9			72.J 68.U	64.6	00,00
1997 1997 1997		GROUND SUR. FACE TO WATER SURFACE IN FEET		1-17.00	12.9* 12.3 12.4	\$	11.0	10.6	9 °C 9 °C	9.7	0 0 0 9	10.1	10.7	11.1	8.9	11.2	17.3	י מי נ י מי נ		7 • 7 0 • 4	0 4 0 * * *	7.7	9.7 11.1	1-18.00	1-18.01	22.7	25.4	2.02
2117 2117 2117 2117 2117 2100 2117 2100 2117 2100 2117 2100 2000 2117 2100 2000 2117 2100 2000 20		DATE	HEGION		7-13-65 8-18-65 9-21-65	7-14-64	8-18-64 9-15-64	10-13-64	12-15-64 1-19-65	2-16-65	4=14=65	5=17=65 6=15=65	7-13-65	59-12-6	7-14-64	8-18-64	9-15-64	11-17-64	1-19-65	3-16-65	5-17-05 5-17-05	7=13=65	8-18-65 9-21-65			7-13-64 8-18-64	9-15-64	
		GROUND SURFACE ELEVATION IN FEET	COASTAL		305.0	292.0									346.0											9.5 ° 0		
		STATE WELL NUMBER	NONH	ALEXANDER VALLEY	11N/10W- 8P 1 M	11N/10w-17P 2 M									11N/10m-19F 2 M									SANTA ROSA VALLEY	SANTA ROSA AREA	06N/08w= 7P 2 M		

	AT WELLS
E C-3	LEVELS A
TABLE	WATER LI
	GROUND \

AGENCY SUPPLYING DATA			5000			5000											2000												2005							
WATER SURFACE ELEVATION IN FEET		02	39.7	38,3	37.1	85.9	85°3 84°2		86.8	87.4	86°.9	87.2	98.0	85°/	85.3			90.2	9°68	9.26	× • 110	8.06	95.3	74°-7	92.8	61°7	9°16		71.1	68.7	1.44	C . 92 .	15.4	76.4	75°7	
GROUND SUR- FACE TO WATER SURFACE IN FEET		1-18.02	27.3	28.7	29.9		14°7 15.8								14.7		9 9 6	ه. 6 6 . 6	7.6	4 • 5	4°1	6.2	1.7	2 C C	4	ຕາເ ນົ່າ	5 4 1 4	•	18.9	21.3	1.22		14.6	13.6	14.3	
DATE	EGION		6=14=65	7-13-65 8-16-65	9=21=65	7=14=64	8-14-64 9-15-64	10=13-64	12-15-64	1=19=65	2=16=65	59=7[=7	5=17=65	6-14-65 7-13-65	8=18=65	CO-17=6	7= 0=64	9-12-64	10=13=64	11-17-64	1-10-64	2-16-65	3-16-65		6=14=65	7-13-65	8=18=65		7=14=64	8=18=64	90=01=6		12-15-64	1-19-65	2-16-65	
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION	REA	67.0			100.0											97.0												0°06							
STATE WELL NUMBER	ON	HEALUSHURG AREA	08N/09W-22L 1 M			09N/09W=20E 2 M											09N/094=20K 4 M												03N/03W=28N 1 W							
AGENCY SUPPLYING DATA			5000		_							5050			0 0 1	0005											0005									
WATER SURFACE ELEVATION IN FEET		01	19.9	2.97	80°	82°1	11 to 12	5.68	82.8	B1.4	н0.7	60°8		20		70.6	70.0	10.0			66.4						34.5		0°E+			1 37	• • • • • •	2	41.H	41.2
GROUND SUR- FACE TO WATER SURFACE IN FEET		1-14.01	10.1	10.8 9.8	5 LD (4°5	5°7 5'1	6.1	7.8	8.6	6°6	29.2		20 PR1=1	-	4 4 4 4	7.0	/ • U	9 69	99	10.6	9	69	9 ≁	1 49	¥9	24.5)))	24.0	\$	A 1		25.0	9 9 99 1	25.2	25.8
DATE	NO		9-15-64	11-17-64	12-15-64	1-18-65 2-15-65	3=16=65 4=14=65	5-18-65	6=14=65 7=12=65	8-16-65	9-21-65	3=23=65				7=14=64 A=18=64	9=15=64	1 1 = 1 7 = 6 4	12-15-64	1=19=65	2=16=65	4=14=65	5=18=65	6-14-65 7-13-65	8=16=65	9=21=65	7-14-64	8=1H=64	9=15=64	10-13-64	*0=/1=11	39-01-1	2010-01	3-16-65	4-14-65	5=18=65
	6																																			
GROUND SURFACE ELEVATION IN FEET	VORTH COASTAL REGION	AREA	0*06									0.06		HEALUSSUNG AREA	1	17.0											67.0									

OMOUND JUR WAYER ACENCY

0HOUNO

TABLE C-3 GROUND WATER LEVELS AT WELLS

	AGENCY SUPPLYING OATA			2000		000	5000		
	WATER SURFACE ELEVATION IN FEET		02	154.0 153.3 152.7 153.7 152.3 152.3 152.5 152.5	151.5 150.8	6,9 6,9 6,9 6,9 6,9 7,9 6,1 7,9 6,1 7,9 6,1 7,9 6,1 7,9 6,1 7,9 6,1 7,9 6,1 7,9 6,1 7,9 7,9 6,1 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9		00-10 00-00 00-00-00-00-00-00-00-00-00-00-00-0	4 4 M M M 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	GROUND SUR. FACE TD WATER SURFACE IN FEET		1-18.02	7 • 0 • 7 • 0 • 7 • 3 • 7 • 3 • 7 • 3 • 1 • 5	9.5 10.2		1=98,00 21,1 5150	1900 1900 1900 1901 1901 1901	20.2 20.8 21.8 21.1
	DATE	EGION		1-19-65 2-16-65 3-16-65 3-16-65 5-17-65 6-14-65 6-14-65 7-13-65	8=18=65 9=21=65	72-15-52 72-15-54 72-15-54 72-15-54 72-15-54 72-15-54 72-15-54 72-15-54 72-15-54 72-15-54 72-15-55 72-15-54 72-15-55 72-15-54 72-15-55 72-15-	7-13-64 8-18-64 9-16-64	11-13-64 11-13-64 12-15-64 1-19-65 2-16-65 3-16-65 3-16-65	5=18=65 6=14=65 7=12=65 8=16=65 9=21=65 9=21=65
	GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION	AREA	161.0		142.0	'ER VALLEY 25.0		
: C-3 :VELS AT WELLS	STATE WELL NUMBER	NON	HEALDSBURG AR	1 M 10W-26M 1 M		H 1 056-101/201	LOWER RUSSIAN RIVER VALLEY 07n/10*- 6N 1 m 25.0		
TABLE C-3 WATER LEVELS	AGENCY SUPPLYING DATA			5000	5000	0 0 1			0005
GROUND	WATER SURFACE ELEVATION IN FEET		05	75°1 76°3 74°4 71°5 71°5 83°5 83°5	107.4	1004 1004 1004 1004 1004 1004 1004 1004	166.1 170.8 170.3 172.1	1710.3 171.0 170.4 168.7 168.1	149.3 148.6
	GROUND SUR- FACE TO WATER SURFACE IN FEET		1-18.02	14.9 13.7 15.6 15.6 21.5 21.5	12.6	12.6 13.6 6.11 1.5 11.5 11.5 11.5 12.6 12.0 12.0 12.0 10.9	111 5.14.9 6.2 0.9 7.9 7.9 7.9 7.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,00 9,00 11,34 11,34	5 12,2 12,2
	DATE	REGION		3-16-65 4-14-65 5-174-65 6-14-65 7-13-65 7-13-65 8-14-65 8-21-65	7=14=64	9-10-13-04 11-11-05-04 11-11-05-05 11-11-05-05 11-11-05-05 11-11-05-05 11-11-05-05 11-11-05-05 11-05-05 11-11-05 11-05-05 10-05-05 10-05-0	8=18=64 9=15=64 10=13=64 11=17=64 12=15=64 1=19=65 1=19=65	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7=14=64 8=14=64 9=15=64 10=13=64
	GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL H	REA	0.0	120.0	140.0			161.0
	STATE WELL NUMBER	40N	HEALDSHURG AREA	N I N82-M60/N60	09N/10#-12C 1 M	10v/104-220 1 M			10N/10w=26M 1 M

e : . . .

1-17-04

	ELEVATION	DATE	WATER SURFACE IN FEET	SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
NORT	H COASTAL	HEGION				SAN	SAN FRANCISCO BAY REGION	BAY REGION			
LOWER RUSSIAN RIVER	VER VALLEY		1-98-00	00		PETALUMA VALLEY			2-01-00	0.0	
07N/11W-14E 1 M	25.0	8-18-64	20.2	4 • 8	5000			:			
		9-15-64	20.1	6 ° 4		03N/064- 10 1 M	2°0	3=22=E	e.	1.1	0505
		11-17-64	16.2	9°9		05N/07w-19N 1 M	45.0	3=22=65	10.0	35.0	0505
		1-19-65	15.3	0.0		05N/07#-204 2 M	41.0	7-13-64	73°0*	-32.0	0005
		2-16-65	18.1	6.9				8-18-64	70.1	-29.1	
		3-16-65	18.9	6.l				9-14-64	4°E1	= 32 + 4	
		69=4=4 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	16.2	ຍ ວ ຍິງ				10-12-64	78.1	1.16-	
		6-14-65	19.7	ריי היי היי				10-12-24	0.10		
		7=12=65	20.1	4°8				1-14-65	56.6	- 15.0	
		8-16-65	20.5	ر م ا				2=15=65		8-51-	
		9-21-02	19.9	1°5				3-15-65		-12.2	
08N/10W-290 2 M	50.0	7-13-64	\$		5000			4 =] 4 = 65	1.e1	=12.1	
		8-18-64	6.6	4°E4				34=4[=4			
		9-15-64	7.0	0°E*				7-12-65		-26.4	
		10-13-64		4.0.4				8=16=65		-27.7	
		12-15-64		40.0				9=21=65		H • E 7 =	
		1-19-65	9.9	46.7		05N/07#-21H 1 M	0.49	7-13-64	6.54	21.7	0005
		2-16-65		4 0 • •				8=18=64	44.1	20.9	
		3-16-65		40°0				9-14-64	44.5	20.5	
		5-18-65		4 D • B				10-12-64	45.6	19.4	
		6=14=65	- 59					11-10-04	40°C	0.71	
		7-13-65	4.6	45.4				1-18-65	36.45	2.85	
		8-16-65	۶° د					2-15-65	34.2	9°0E	
		69=17=K	2.4	44.1				3=15=65	34.1	9.05	
								4 = 1 4 = 0 5	9. EE	1.15	
								60=0T=6	36.0	24.0	
								59-61-L	7 0 C C	1.00	
								8-16-65	41.6	23.4	
								9=21=65	43.6	21.4	
						05N/07W-26R 1 M	53.6	7-13-64	27.6	26.0	5000
								8-14-64	2H.8	24° B	
								9=14=64	28.1	25.5	
								10-12-04	28.8	9 9 9	
								+0=01=11	64°0	0 4 ° 0	
								39-61-1	0.40	2 ° 0 °	
								2-15-65	24.1	24.5	
								3-15-65	24.2	4.62	
								4-13-65	23.74	4°42	

TABLE C-3 GROUND WATER LEVELS AT WFILS

														_		-	-	-	-	-	-	7	Ţ	Т	7	
	AGENCY SUPPLYING DATA			5000		5101	1014	1016	1014	1015	1014	1014	1014	1014	1014	5101	1015	1015	1016	1014	5101	1015	1014	5101	1015	
	WATER SURFACE ELEVATION IN FEET		01	0 - U 4 4 6) 10 -C • • • • • • •	4°0	73.5	122.5	106.7	6 ° 1	٤.٤	5°4	105.4	45°b	44.1	10.2	-7.7	48.7	136.3	104.4	115.9	127.3	125.9	62°3	70.5	
	GROUND SUR- FACE TO WATER SURFACE IN FEET		2-02.01	6	u ^u < • • • • • •	67.6%	47.5*	ъ. ъ.	13.3	10.3*	18.7	16.1	4 • 6	4 ° Ū	30.9*	1 . H	44.74	28°3	103.7	36.7	64.l	42.7	41.1	4.7	9°5	
	DATE	REGION		3-15-65 4-13-65 5-17-65 6-14-65	8-16-65 8-16-65	20=07=4 79=67=6	3=22=65	3=22=65	3=22=65	3=22=65	3=22=6	3+22-65	3=22=65	3=22=65	3-22-65	3=22=65	3=22=65	3=22=65	3-29-65	3-29-65	3=23=65	3-23-65	3=23=65	3=24=65	3=26-65	
	GROUND SURFACE ELEVATION IN FEET	FRANCISCO BAY R		13.0		0.051	0.151	132.0	120.0	17.0	22.0	22.0	110.0	0.04	75.0	12.0	37°0	77.0	240.0	145.0	180.0	170.0	167.0	67 ° 0	80.0	
BLE C-3 LEVELS AT WELLS	STATE WELL NUMBER	SAN 1	NAPA VALLEY	5N/04W-11M 1 M			M 1 MC1-1440/NC0	• ~	05N/04m-13M 2 M	05N/04#=14C 1 M	05N/04#=15C 2 M	05N/04#=15E 1 M	05N/04*=19R 2 M	05N/04w-20R 2 M	05N/04#=218 1 M	05N/04#=22M 1 M	05N/04w=28R 1 M	05N/04#=29M 1 M	06N/03w=318 1 M	06N/03w=31F 1 M	06N/03w-31M 1 M	06N/03W-31N 1 M	06N/03*=31N 2 M	06N/04W- 5R 1 M	06N/04M- 6L 2 M	
TABLE WATER LE	AGENCY SUPPLYING DATA			5 000		0505		1014	5101	5101	1015	1014	1015	1015			1010		1016	5101	5101	1015	2000			
GROUND	WATER SURFACE ELEVATION IN FEET		0	4 9 9 4 9		12.3	0 1	12.9	l.u	11.6	15.8	с	0 7 UE	6-711		1407	C.Y2		110.0	102.7	26.5	3.1	4 ° 5	01	วางว วันกัง	7 C 4 I
	GROUND SUR- FACE TO WATER SURFACE IN FEET		2-01.00	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	1 9 1	6 • 5	2-02.00 2-02.01	12.1	10.2	13.4	6. Z	18.1	2°55	5°22		1 0	34°0	1 A B B B B B B B B B B B B B B B B B B	11.0	19.3	3°5	12.9	ຄ. ຄ.	00		
	DATE	REGION		5=18=65 6=14=65 7=12=65	9=21=65	3=22=65		3=22=65	3=22=65	3=22=65	3=22=65	3=22=65	5-22-6 54-62-6	3=22=65			3-23-65		3=22=65	3=29=65	3=22=65	3-22-65	7=13=64	9=14=64	11-16-64	12=14=64
	GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY		53.6		14.8		25.0	12.0	31.0	22.0	0 • 0 •	0.046 0.0	0.10		10.01	63.5 5	0.00	121.0	122.0	30.0	16.0	13.0			
	STATE WELL NUMBER	SAN	PETALUMA VALLEY	05N/07W-26R 1 M		05N/07*=35K 1 M	NAPA-SONOMA VALLEY NAPA VALLEY	04N/04*= 2L 1 M	04N/04W- 4C 1 M	04N/04m= 58] M	04N/04W= 50 2 M	-	N ·			3G 1	4 G 1		05N/044 5P 1 M	05N/04W= 5P 2 M	05N/04w=10F 1 M	05N/04w=11F 3 M	05N/04w-11M 1 M			

	WELLS
	AT
TABLE C-3	WATER LEVELS
	GROUND

AGENCY SUPPLYING DATA			5101	5101	1015	5101	1014	1012	1014	1014	lulc	5101	5101	1015	1014	1014	1014	1014	0005								1014
WATER SURFACE ELEVATION IN FEET		10	12.1	10.9	14 ° G	150.8	110.2	2.511	86,3	177.2	153.4	153.1	159.8	180.1	197.2	¢2.50[۲4°,]46.4	140.8	1.151	6.751 6.851	140.0 148.9	14/•8 146•5	145°5 145°5	1.43°.4	141.9	149.9
GROUND SUR. FACE TO WATER SURFACE IN FEET		2-02.01	25°3°	12.1	20.1*	29.2	۱.н	1 • 5	3.7	2.8	34 ° H	34 . 94	12.24	1.9	17.8	12.5	15+5*	8.64	14.2	17.3 17.3	17.7	15.0 6.1	7°5	а.С 4.I	15•1 11•7	13.1	5.1
DATE	REGION		3-23-65	3-23-65	3-23-65	3=23=65	3-24-65	3=24=65	3=24=65	3-24-65	3=24=65	3=24=65	3-24-65	3=25=05	3=25=65	3=25=65	3-25-65	3=25=65	7-13-64	8=17=64 9=14=64	10-12-64	12-14-64 1-18-65	2-15-65 3-15-65	4-13-65 5-17-65	6-14-65 7-12-65	8-16-65 9-20-65	3-25-65
GROUNO SURFACE ELE VATION IN FEET	SAN FRANCISCO BAY F		34.0	23.0	105.0	180.0	112.0	114.0	0.09	180.0	188.0	188.0	172.0	142.0	215+0	175.0	190.0	155.0	155.0								155.0
STATE WELL NUMBER	SAN E	NAPA VALLEY	06N/04w-35G 3 M	06N/04w=35L 3 M	06N/04W=36H 1 M	06N/05w=12R 1 M	07N/04w-30L 1 M	07N/04w=30M 1 M	07N/04#=31E 1 M	07N/04#=328 2 M	07N/05w= 3G 1 M	07N/05w= 36 2 M	07N/05*- 4R 2 M	07N/05w= 5A 1 M	07N/05W- 6J 1 M	07N/05w- 44 1 M	07N/05w- 8M 1 M	07N/05W= 90 1 M	07N/05w- 90 2 M								W E 06 =#50/N20
AGENCY SUPPLYING DATA			5101	5101	5101	1015	5101	5000								5101	5101	1014	5101	1015	5101	5101	1014	5101	5101	5101	5101
WATER SURFACE ELEVATION IN FEET		01	70.4	116.6	č.£a	21.4	53.2	47.1	4 H = 4	47.1	51.6	62.3 60.9	61.U 54.4	56.6 52.2	53.7 51.8	62.6	£ • ¢ 0 1	60.0	23.7	71.3	17.1	27.4	50.1	85,9	138.9	63.5	73°4
FACE TO WATER SURFACE		2-02.01	4 • 6	18.4*	6 • S	45.7	8.8	19.3	18.6	16.4	15.4 3.4	4.7 6.1	6.0 7.6	10.4 14.8	13.3 15.2	22.4	19.7	1 • 0	\$9°3¢	15.7*	14.9	22.6	11.3	6.1	10.1	10.5	33.64
OATE	REGION		3=24=65	3-23-65	3-24-65	3=23=65	3=23=65	7-13-64	8-17-64 9-14-64	10-12-64	1-14-64	2=15=65 3=15=65	4-13-65	6-14-65 7-12-65	8-16-65 9-20-65	3-23-65	3=23=65	3=23=65	3=23=65	3-55-65	3-23-65	3=23=65	3=23=65	3-23-65	3=23=65	3=23=65	3=23=65
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY 1		75.0	135+0	70.0	67.0	62.0	67.0								0.68	125 • 0	61.0	0°E5	87.0	32+0	50+0	62.0	92.0	149.0	94.0	107.0
STATE WELL NUMBER	SAN F	NAPA VALLEY	06N/04W- 6P 1 M	06N/04W- 7N 1 M	06N/04W= 8E 1 M	06N/04W-15G 1 M	06N∕04w=16P 1 M	06N/04w-17A 1 M								06N/04W-18A 2 M	06N∕04*=198] M	06N/04w=21G 1 M	06N/04w=22P 1 M	06N/04w=23J 1 M	06N/04M-26N 1 M	06N/04w=27N 1 M	06N/044-28K 1 M	06N/04W=298] M	06N/044=30C 1 M	06N/04w=32J 6 M	06N/04W=32L 2 M

Concreted burn whitem whitem

GHOUND WATTR LEVELS AT WELLS

T ONCOMO TUP

STATE WELL GROUND STATE WELL GROUND EVERTACE DA STATE WELL SAN FRANCISCO BAY RECION DA NAPA VALLEY ELEVERTACE DA NAPA VALLEY ELEVERTACE DA OTN/OSW=160 1 192.2 3=2 OTN/OSW=140 1 140.0 3=6 OTN/OSW=155 1 1441.0 3=6 OTN/OSW=154 1 141.0 3=7 OTN/OSW=154 1 1441.0 3=7 OTN/OSW=254 1 152.0 3=2 OTN/OSW=254 <t< th=""><th>те 44-65 13-65 13-65 55-65 55-65 55-65 55-65</th><th>0</th><th></th><th>TABL</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	те 44-65 13-65 13-65 55-65 55-65 55-65 55-65	0		TABL						
GROUND SAN FRANCISCO BAY REC IM 162.2 IM 162.0 IM 164.0 IM 171.0 IM 171.0 IM 171.0 IM 165.0 IM 171.0 IM 152.0 Z IM IM 152.0 Z IM IM 157.0 Z IM IM 157.0 Z IM IM 175.0 Z IM IM 190.0 Z IM </td <td>Te 33-655 55-655 55-655 55-655 55-655 55-655 55-655 55-655</td> <td></td> <td></td> <td>WATER LEVELS</td> <td>TABLE C-3 ER LEVELS AT WELLS</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Te 33-655 55-655 55-655 55-655 55-655 55-655 55-655 55-655			WATER LEVELS	TABLE C-3 ER LEVELS AT WELLS					
SAN FRANCISCO BAY REG LEX 1 H 162.2 2 M 153.0 1 M 140.0 1 M 140.0 1 M 141.0 2 M 140.0 2 M 152.0 2 M 152.0 1 M 152.0 2 M 152.0 1 M 152.0 1 M 152.0 2 M 152.0 2 M 152.0 2 M 175.0 2 M 175.0 2 M 175.0 2 M 175.0 2 M 175.0	28 -24-65 -24-65 -24-65 -25-65 -25-65 -25-65 -25-65	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATIDN IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
LEY 1 M 162.2 2 M 139.0 1 M 141.0 1 M 141.0 1 M 171.0 2 M 193.0 1 M 152.0 1 M 152.0 1 M 152.0 1 M 152.0 1 M 152.0 2 M 152.0 2 M 152.0 2 M 175.0 2 M 175.0 2 M 175.0	-24+65 -24+65 -24+65 -25+65 -25+65 -25+65 -25+65				SAN	SAN FRANCISCO BAY REGION	REGION			
1 H 162.2 2 H 139.0 1 H 140.0 1 H 143.0 1 H 143.0 1 H 143.0 1 H 143.0 2 H 193.0 2 H 193.0 3 H 166.0 4 H 165.0 1 H 133.0 2 H 133.0 3 H 133.0 4 H 133.0 1 H 127.0 1 H 127.0 2 H 193.0 3 H 157.0 4 H 157.0	-24-65 -24-65 -24-65 -24-65 -25-65 -25-65	2-02.01	1		NAPA VALLEY			2-02.01	01	
Z M 139.0 I M 143.0 I M 143.0 I M 141.0 I M 141.0 Z M 193.0 Z M 193.0 Z M 193.0 Z M 193.0 Z M 193.0 I M 152.0 I M 133.0 Z M 133.0 Z M 127.0 I M 127.0 Z M 127.0 Z M 127.0 Z M 127.0 Z M 175.0 Z M 175.0	-24+65 -23+65 -24+65 -25+65 -25+65 -25+65	11.7	150.5	1014	08N/05w=31H 1 M	210.0	3=26=65	11.5	194.5	5101
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 3 1 1 4 1 1 1 1 1 2 1 1 3 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1		,	1		08N/06w= 3M 1 M	0.055	3-24-65	32.7	£°162	5101
1 140.0 1 141.0 1 141.0 1 171.0 2 193.0 3 193.0 1 166.0 3 161.0 3 161.0 3 161.0 4 152.0 3 140.0 1 152.0 1 133.0 1 153.0 1 153.0 1 153.0 2 127.0 2 127.0 2 127.0	- 23-65 - 24-65 - 25-65 - 25-65 - 25-65 - 25-65 - 25-65) • c	ר ו ון ו	1014	08N/05w= 4F] M	330.0	3=26=65	70.5*	254°5	5101
1 143.0 1 141.0 1 171.0 2 193.0 3 165.0 1 165.0 3 140.0 1 152.0 3 127.0 1 127.0 1 153.0 2 152.0 1 153.0 2 153.0 3 157.0 4 153.0 1 153.0 2 155.0 3 175.0	- 25 - 65 - 25 - 65 - 25 - 65 - 25 - 65	1.2	132.8	1015	08N/06W- 6L 4 M	335°0	3=25=65	6.3	328.1	5101
1 M 141.0 1 M 171.0 2 M 193.0 2 M 166.0 1 M 166.0 3 M 161.0 1 M 133.0 2 M 127.0 1 M 127.0 1 M 127.0 1 M 153.0 2 M 127.0 2 M 127.0 2 M 175.0	-25-65 -25-65 -25-65	ы.5	134.5	1015	08N/06W- 90 2 M	290.0	3=26=65	11.6*	278.4	5101
1 M 171.0 2 M 193.0 1 M 166.0 3 M 161.0 4 152.0 M 1 M 133.0 1 M 133.0 1 M 127.0 1 M 127.0 1 M 127.0 2 M 127.0 2 M 127.0 2 M 127.0	-25-65 -25-65	10.4	130.6	1015	08N/06W- 9H 1 M	290.0	3=25=65	٤.5	246.7	1014
Z M 193.0 1 M 166.0 Z M 161.0 1 M 152.0 1 M 133.0 2 M 127.0 1 M 133.0 1 M 127.0 1 M 127.0 2 M 127.0 2 M 127.0 2 M 127.0 2 M 175.0	-25-65	10.4	160.6	5101	08N/06w= 9H 2 M	291.5	3=25=65	4.1	287.4	5101
1 166.0 2 161.0 1 152.0 1 152.0 3 140.0 1 133.0 2 127.0 1 157.0 2 127.0 2 127.0 3 127.0 4 157.0 5 190.0 6 175.0		11.0	1H2.0	5101	08N/06w=100 1 M	0.065	7=]3=64	*C.1C	HTHY	0005
2 M 161.0 1 M 152.0 3 M 140.0 1 M 133.0 2 M 127.0 1 M 127.0 2 M 127.0 3 M 127.0 4 1 157.0 3 M 175.0	3=25=65	5°3	160.1	5101			8-17-64	8.1	281.9	
<pre>1 M 152.0 3 M 140.0 1 M 133.0 2 M 127.0 1 M 127.0 1 M 127.0 1 M 153.0 2 M 127.0 2 M 175.0</pre>	3=25=65	1.1	159.9	5101			9-14-64 10-12-64	9.4 11.1	218.9 218.9	
3 M 140.0 1 M 133.0 2 M 127.0 1 M 127.0 1 M 153.0 2 M 153.0 2 M 127.0 2 M 175.0	3-24-65	٤.	151.7	1014			11-16-64 12-14-64	9°2 7.4	240.8 242.6	
<pre>1 M 133.0 2 M 127.0 1 M 115.0 1 M 127.0 2 M 127.0 2 M 127.0 2 M 175.0</pre>	3-24-65	.2	139.8	5101			2-15-65	1.7	288.3 288.3	
Z M 127.0 1 M 115.0 1 M 127.0 1 M 163.0 2 M 127.0 2 M 190.0 2 M 175.0	3-24-65	6.3	126.7	5101			3-15-65	2.0	288.0 288.2	
1 M 115.0 1 M 127.0 1 M 163.0 2 M 127.0 2 M 175.0 2 M 175.0	3-24-65	1.5	125.5	5101			5-17-65	5° 5°	206.1	
1 M 127.0 1 M 163.0 2 M 127.0 2 M 190.0 2 M 175.0	3-24-65	2.9	112.1	5101			7-12-65	4°6	285.4 283.8	
I M 163.0 2 M 127.0 2 M 190.0 2 M 175.0	3=29=65	6.5	120.5	5101			9=20=65	7+5	282.5	
Z M 127.0 Z M 190.0 Z M 175.0	3=24=65	17.1	145.9	1015	08N/06w=14N 1 M	245.0	3=25=65	11.5	273.5	1015
2 м 190.0 2 м 175.0	3-24-65	2.7	124.3	5101	08N/06*=140 1 M	250.0	3-26-65	7.4	242.6	5101
2 M 175+0	3=24=65	9.7	180.3	1015	08N/06w-23M 1 M	285.0	3=25=65	8°5	۲6.5	5101
	3-24-65	3 • 4	171.6	5101	08N/06w=248 1 M	300.0	3=26=65	8°2	291.5	5101
07N/05w-36N 1 M 141.0 3-	3-24-65	4°.	136.5	5101	08N/06W=25G 2 M	230.0	3=26=65	13.70	216,3	5101
	3-25-65	1.7	218.3	5101	09N/06w-310 1 M	340.0	3-26-65	2.04	335°8	5101
08N/05*=31M 1 M 212.0 3-	3-25-65	13.5	198.5	5101	09N/06w=32M 1 M	360.0	3=26=65	16.6	4.5.45	5101
		19.9	217.1	1015	09N/07w=24L 1 M	460.0	3=26=65	9.6	450.4	5101
					09N/07w=25N 1 M	360°0	3=26=65	6°9¢	373.1	1010

40/200

	AT WELLS
TABLE C-3	LEVELS
	GROUND WATER
	GR

AGENCY CE SUPPLYING T DATA			5000	0.01	0.00	5	30 14	- 10	0	- 10				4 5109	30	6 5050	9	m .	n -	2	5	- 10		4	6	* 0						0	4	2					
WATER SURFACE ELEVATION IN FEET		.01	1.5	1 4 0	0.0° 0.0°	9	p .	- 0°-	4					20.4	19.8	2.	°.	"	m n	3.7	ŝ	ວິທີ		5.4	4	ກໍ -	r m		4	1.6-		-1.0	3 (• (0*0		N	1.6		•
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-02.01		11.8						13.5				14.6	15.2	4 • 4	4°5			5 m		۰. ۲. ۲					9.9 9.0	÷	m (4 • C		5.0	3.6	4 • 0	0 - 1 - 1		41		
DATE	REGION		10-12-64	12-14-64	2-15-65	3-15-65	4 =] 4 = 65	5=]4=65	7-12-65	9-21-65				10-13-64	3=26=65	7=24=64	8-21-64	9=52=64	10-22-04	12-29-64	1-18-65	3-16-65	4=19=65	5-17-65	6=21=65		9=25=62	2-26-4		9-22-04	10-22-64	11-19-64	12-29-64	1-14-65 3-14-46	2-10-02	4-19-65	5-17-65	29=12=9	8-14-65
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		16.0									VALLET		35.0		7.0												4.0	0**										
STATE WELL NUMBER	SAN	NAPA VALLEY	05N/05W-30J 3 M											04N/02M- 6A 1 M		04N/02W- 9A 1 M												M L HO -FCU/MAU											
AGENCY SUPPLYING DATA			5101	1014	1014				5000												5050	0000	0005	-													5000		
WATER SURFACE ELEVATION IN FEET		.01	373°4	398.5	9-145		2 0 2		65°0	1.20	61.4	62.1	65°6	66.5	69.7	66.3 2 2 2	65°.]	64.3	66.4	64.0	9°E	10.1	10.8	บ 4 ม 4	•	3.7	3.7	0.0	10.4	10.0	2°6	1 A.	7.5	6 • 4	5.5	4 U		2.1	-15.2
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-02.01	6.6	1.5	1.1		2-02.02		20.0	N • 0 •	13.6	22.3	19.4	16.5	15.3	16.7	14.01	20.7	14.6	21.0	7.1	2	2.0	11.6		12.3	12.3	11.0	5.2	6.0	а. С	2.0	1 LD - 3D	9.6	10.5	c•11	A	13.9	31.2*
DATE	REGION		3-26-65	3-44-65	3-26-65				7=13=64	0-17-04	10-12-64	11-16-64	1-18-65	2-15-65	3=15=65		-0-01-C	7-12-65	8-16-65	9=21=65	3=23=65	1-14-64	*0-01-I	1 = 1 3 = 0 4 8 = 1 8 = 6 4	2	9-14-64	10-12-04	12-14-64	1-18-65	2=15=65	10-11-5 1-2	1 1 1 0 1 1 1 1 1 1	6=14=65	7-12-65	8=16=65	9-21-65	7=13=64	8-18-64	9-14-64
GROUND SURFACE EL EVATION IN FEET	SAN FRANCISCO BAY REGION		390.0	400.0	394.0				0•5¤												11.0	0.41	1001														16.0		
STATE WELL NUMBER	SAN	NAPA VALLEY	09N/074-25N 2 M	09N/07w=26P 1 M	09N/07W-35K 1 M		SUNOMA VALLEY		05N/05w=17C 1 M												05N/054-28N 1 W	M [N62="50/N50	-														05N/05W-30J 3 M		

	AGENCY SUPPLYING DATA			5000						5109	5000													0.000										
	WATER WATER SURFACE ELEVATION IN FEET		00	1.3	17.2	17.8	17.0	17.1	C • / T	23.6 38.1	47.7	45.1 20	44°.]	43°0	t • 1 • 1	45.9	44.0	3 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 °	10 ° 10 *	10 ° 0	4	00	2	C C F	71.6	C.07	10.3	71.0	81.0	74.0	14.1	73.5	10.4	70.5
	GRDUND SUR- FACE TO WATER SURFACE IN FEET		2-03.00	22.7* 9.8	6 • 8		0.6 7.0	0 0 P	. • 0	22.4 7.9	17.3	19.9	20.9	22.0	2.0 2.4 2.4 2.4	19.1	20.4	30.8*	16.5	18.2	1.0%	00 70 6			11.4	12.5	1.0.7	12.0	2.0*	. 30 3	6.9	9°5*	10.0	12.5
	DATE	REGION		12-14-64 1-18-65	2-15-05	4=13=65 6=13=65	6=14=65 7=12=65	8=16=65	50-02-6	10-14-64 3-26-65	7-13-64	8=17=64	10-12-64	11-16-64	16414404	2-15-65	3=15=65	4 - 13 - 65 5 - 17 - 65	6=14=65	7=12=65	8-10-02				8=18=64	9=25=64	10-10-64	11-16-64	12-21-64	1-18-65 2-16-65	3-17-65	4-19-65	5-17-05 6-21-65	7-20-65
	GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY F	LEY	24.0						4 6 • 0	65°0														0.10									
C-3 VELS AT WELLS	STATE WELL NUMBER	SAN FI	FAIRFIELD SUISUN VALLEY	05N/02W-27J 2 M						05N/02W=29R 1 M	05N/02#-301 1 M												TOWALLO VALLET		W T YJ =MTO/NTO									
TABLE C-3 WATER LEVELS	AGENCY SUPPLYING DATA			5050	401c	100	ANTE	901٤	5050											0000											0005			
GROUND V	WATER SURFACE ELEVATION IN FEET		.00	0*0	28.7	4 ग 4 0	7.7 14.6	101.5 102.3	d.14	50.5 47.8	49°.94	0	53.5	52.9	5. C.	52.6		- 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		1 ° 1	1.7	1.9	6.1	6 • t	0.0	5 e 4	ມ ທີ ມີ ທີ່	2.1	1.6	7 • 7	7.8	Э° Е	2.	1972
	GROUND SUR- FACE TD WATER SURFACE IN FEET		2-03.00	0+7	۳•8 ۲	3.6	14010 904	13.5 12.7	4° 6	9.5 12.2	10.7		6.5 6	7.1	0 U 0 X	7.4	99 ⁽				າ ຕ ທີ່ທີ່	5.1	0 35 #	9°	0 4 ° • • •	1.6	3.7	¢ • 4	ະມີ ເ	n N	16.2	20.5	5 X	2.15
	DATE	TEGION		9=22=65	10-13-64	3=25=65	10-12-04 3-23-65	10-14-64 3-25-65	7-24-64	8-21-64 9-25-64	10-22-64	12-23-64	2-16-65	3-18-65	4=17=05 A=17=66	6-21-65	7-20-65	8-18-80 9-2-60		7=24=04	8-61-04 9-25-64	10-22-64	12-29-64	1-14-65	3-14-65	4-19-65	5=17=65 6=21=65	7-14-65	8-18-65	9 0- [2-6	7-13-64	8=17=64	9-14-04	11-16-64
	GROUND SURFACE ELEVATION IN FEET	FRANCISCO BAY REGION	EY	4.0	37.0	e e	24°0	115.0	60.0											7 • 0											24.0			
	STATE WELL NUMBER	SAN F	FAIRFIELD SUISUN VALLEY	M I H0-W20/N40	04N/03W= 10 1 M		05N/01E=36A 1 M	05N/01w- 7E 1 M	M F 915-#201050)										05N/02*=25R 1 M											05~/02*-27J 2 M			

3 " O I

3 . . .

112-05

1

21-65 11.5

AGENCY SUPPLYING DATA			0505												0015	5 J. 1	0404											100	0010		1044								
WATER SURFACE ELEVATION IN FEET		2-09.01	27.03	26°0	0.00	25.7	1 - 4 J	1.12	27.2	26.6	د 0 م غ		25°A	7 9	24.62		1/01	16.1	15.8	16.6	10.0	18.7	19.2	1.1.		17.9	17.2		ĉ, s		-41.5	9°0*=	5 - 1 + -	0 • 1 4 =	t t =	-35.9	1.16-	7.15-	
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-0	20+7	22.0	20.00	22.3	7.65	5.05				A 9	22,24	,	30°/	0.01	12.6	13.9	14.2	4 • 5 [11.5	11.3	10.8	0.01		12.1	12.8	4	e 4	•	¥2.5	8]•5	6 ° 2 9 :	1	45.4	76.9	72.1	12.1	
CATE S	GION		7-21-64	3=1d=64 0=36=64	10-21-64	11-16-64	12-21-64	19=9[=7	3-17-65	4-21-45	5-17-65	1010111	9-54-65		3-11-05	7 - 22 - 42	8-19-04	9-52-64	10-21-64	11-16-64	1-10-05	2-16-65	3-17-65	5-1 / - 52	6-0-02	1-10-01-1 1-1-05	9-54-65	10-14-44	20-01-01 20-51-6		7-24-64	8-2]-64	9=19=04	11- 3-64	12-11-64	1-22-65	2-19-65	3-16-65	
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	AREA UPPER AQUIFER	40.0												0 • • • 0	0.07	0 • 0 ¶											7 10	0.0		4 L • U								
STATE WELL NUMBER	SAN FR	EAST BAY AREA UPI	035/02*= AN 2 M											2 1 0H 10000000	r	S - DI-RCU/SEV	-											M C COMC = AE C/SEC	J		045/01*-146 M								
AGENCY SUPPLYING DATA			5050		0505	•											0505	L of L o	0000			0505					1044									-			
WATER SURFACE ELEVATION IN FEET		0.0	71.7	•	47.5	47.7	42.1	4°54	7 - 1	51 ×	5.1c	51.6	51.0			1.04	89°1	3	0 ° A	1	- 0 - J	31.6		0	-		= 34°3	0.35-	0.96-	-26.0	-18.2			1.0 .0	-2.4	-14.1		- 46.0	
GROUND SUR- FACE TO WATER SURFACE IN FEET		2=06.00	11.3		15.5	ግ ቢ 	*6*02	13.6	ې ۲ کې		11.7	11.4	12.0	13.7	13.6	4 C + J 4	10.9	x J	נים שיח	5.7	21.34	16.2		2-09.00	2-09.01		149.6	150°J	151.3	141,3	133.5	G • 221	112.8	109.7	117.7	129.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141.50	
OATE	REGION		8-18-65 9-23-65		1-20-04	8 - 1 8 - 6 4 9 - 7 5 - 6 4	10-19-64	11-16-64	1 2 - 2 1 - 64	2-14-45	3-17-65	4-20-65	5-17-65	7-20-65	8-18-65		3-11-65	7 = 2 () = 6 4	1-10-03-1 11-104	9-22-64	10-19-64	3-14-65			NULT		7=24=64	80-17-8	10- 2-64	11-20-64	12-18-64	14-22-12-2	3=17=65	4=16=65	59=12=5	6-18-65	1-10-07	9-17-65	
GROUND SURFACE EL EVATION IN FEET	SAN FRANCISCO BAY REGION				0.50												100.0	15.0	-			48.0			SOVE HAYWARD FI		٤•٢11												
STATE WELL NUMBER	SAN 1	YGNACIU VALLEY	01N/01W-7K 1 M	ALM ZOT MIT THE PARTY	W 1 NTT-MODINT												01×/02*=13P 1 M	02N/02w=27H 1 M				02N/02w=36k 1 M		SANTA CLARA VALLEY	EAST BAY AREA ABOVE HAYWARD FAULT		N 6 455-*10/S+0												

TABLE C-3

L	ſ	AGENCY SUPPLYING DATA		5100	5100	540]	1044				1044				5401	
L		WATER SURFACE ELEVATION IN FEET		-93.5 -69.4	-90.0 -71.0	-65.6		66.5 -50.1	-+6.J -39.7 -36.3	งงงงอ องงอ⊓งงง ตากงงญญญ เรรรร	- 33.1 - 65.1 - 66.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 50. K	-77-	1.90 4.90 4.
Ľ		GROUND SUR- FACE TO WATER SURFACE IN FEET	2-09.01	104.5 80.4	45.U 76.0	\$ 91.6	96 P	81.3 65.1	61.3 54.7 51.3	9999 9999 9999 9999 9999 9999 9999 9999 9999	98*1 90.6 91.0	40.6 73.6 66.9	51.0 51.0 51.0 51.0	74.2 79.1 81.5 81.9	0.08	1 4 . C C
l		DATE	RGION	10-16-64 3-11-65	10- 7-64 3-15-65	10-25-64 3-15-65	7- 0-64 8- 0-64	9= 0=64 10= 2=64 11=20=64	12-18-64 1-15-65 2-26-65	3-16+65 6+16+65 5+28+66 6+25+66 7+253+66 7+253+66 7+253+66 7+233+66 7+233+665	9-17-05 7-24-64 8-14-64 9-11-64	10- 2-64 11-20-64 12-18-64 1-15-65	2-20-05 3-14-65 4-16-65	5-28-65 6-25-65 1-23-65 8-20-65	9-17-65	3-14-65
		GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION AREA LOWER AQUIFER	11.0	0 • 4	26.0	15.0				کنه م 0				-	0 • n T
L	VELS AT WELLS	STATE WELL NUMBER	SAN F EAST BAY AREA LOV	03S/03W-24J 1 M	035/04w=36K 3 M	045∕02w- 2ù 1 M	045/024=35H 2 M				045/02#-36K 1 M				1	-
TABLE	WATER LEVEL	AGENCY SUPPLYING DATA		5401		5100	5401	5401	5100	5401			5100		0015	5050
L	GROUND	WATER SURFACE ELEVATION IN FEET	10	ម.បរ. ម.ស	-31.9 -39.7 -34.9	20.1	29.4	5.6	-36.2 -26.1	- 28. 28. 27. 27. 9 29. 9	-29°0 -24°0 -27°5	- 26. 7 - 26. 7 - 26. 8 - 26. 8	-22.6 -22.3	01	-27.5	04 .4 04
L		GROUNO SUR. FACE TO WATER SURFACE IN FEET	2-09.01	1.0 H	72.9 80.7 75.9	0.c1 59.92	\$0.€ #	30 • 8 \$	69.6 59.5	70. 69. 11. 65. 65. 65. 65. 65. 65. 65. 65. 65. 65	4 - 0 6 - 0 6 - 0 7 - 0 7 7 - 0 7 - 0 7 - 0 7 7 7 - 0 7 7 - 0 7 7	68.4 68.7 68.8 68.8 7 68.9 7 7 68.7 7 7 68.7 7 7 68.7 7 7 7 7	42.1 41.8	2-09-01	\$ 72.5	23.1 25.6
		DATE	REGION	4 = 1 6 = 65 5 = 2 1 = 65	6-18-65 7+16-65 8-13-655	49=6 =01	3=16=65 7= 0=64	10- 7-64 3-18-65	10- 3-64 3-16-65	7=17=64 8=14=64 9=11=64 10=2=64 11=20=64 12=18=64	1-22-65 2-26-65 3-17-65 4-16-65	co-ca-ca 6-25-65 7-23-65 8-20-65 9-17-65	10-14-64 3-18-65	X L	9-16-64 3-15-65	7=21=64 8=18=64 9=25=64
L		GROUND SURFACE ELEVATION IN FEET	RANCISCO BAY	41.0		0°09	55.0	36.4	4 ° E E	4 Z o ()			1 4 ° 5	LOWER	0.04	30°0
		STATE WELL NUMBER	SAN FI EAST BAY AREA UPF	04S/01W-18G 1 M		045/01%-22P 5 M	045/01*=29C 4 M	045/02#=13C 2 M	045/02w=244 2 M	05S/01*= 4F 1 M			055/01⊌- 9∪ 1 M	×	025/03*=36H 1 M	035/02#=14A 2 M

	WELLS
	AT
TABLE C-3	WATER LEVELS
	GROUND

AGENCY SUPPLYING DATA			00*2												5000														2400															
WATER SURFACE ELEVATION IN FEET	c		-112.3	-114.3 -100 4	E-06-		-77.4	-78.3	- 40. - 44.	0.00+	-110.0	-119.7	-109.7	-113.H	-150.8	-151-3	=137+7	-137.6	9*65-	V • V 5 =	1.10-				-117.4	-143.8	-123.9	-136.9	-95.7	0.19-	-83.5	-8].5	-10.1	-71.6		-61.5	- 14 - 3	-64.5	-85.2	- 79.5	- 62 . 0	-77.7	-75.7	
GROUND SUR- FACE TO WATER SURFACE IN FEET	00 0	2=03.02	150.7	152.4	5.561	125.9	120.4	121.3	-0-921	*0 * 0 *	153.04	162.7	152.7*	156.8	171,8	172.3	158.7	158.6	120.6	5.511	1 • 0 0 T			F . 9F I	1.38.4	164.8	1 4 4 V	157.9	144.4	139.7	132.2	130.2	123.8	120.3	118.5	116.2	123.0*	118.2	133.9	128.2	130.7	126.4	124.4	
DATE	RGION	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	8-50-64	9-25-64 10-10-64	11-21-64	12-24-64	1-26-65	2=23=65	20-07-5 39-12-4	5-7-5	6-29-65	7-22-65	8-24-65	9-63-65	7-21-64	8-21-64	9-14-64	10-17-64	11-17-64	+0-11-21	4494147	2=17=60		5-12-55	6-18-65	7-19-65	8-14-65	9-17-65	7-23-64	8=25=64	9-53-64	10-21-64	1 - 4 - 04	12=30=64	1-28-65	2-25-65	3-30-65	4-47-05	5-26-65	6-25-65	7-26-65	8-27-65	9-21-65	
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION RFA		े • ग												21.0														48.7															
STATE WELL NUMBER	SAN SOUTH BAY AREA	SUCCESSION STATE													065/01w=23E 1 M														065/02w-16H 1 M															
																_										-														_				
AGENCY SUPPLYING DATA			0.042												2400														2400															
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET	2			-126.4			-81.9	= 655 • B	1.00-	- 1	=107.0	-121.8	=124.2	-129.54 -	-106.0 2400	-111.3	-114.0	-111.9	-105.7	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1.00	J * * D =	- 76 8		F . 66-	-104.5	-108.9	-112.0	68.6 2400	70.6	69.2	56°5	1 U U U U	75.5	16.6	75.9	74.7	66.6	67.0	95°3	104.1	112.9	119.0	
WATER SURFACE ELEVATION IN FEET	2-09.02		-122.4	142.2 =126.4								137.6 -121.8			-106.0						1.00- 1.022		7				246.94 =108.9	•				172.2 68.3												
WATER SURFACE ELEVATION IN FEET		-111 -	138.2 =122.4		103.4	102.1	97.7	101.6			122.8	137.6	140.0		-106.0	249.3	252.0%	249.9	243.7	231.8		5 6 7 7 7 7	4 7 LC	0.040	237.34	242.5	246.94	•	68.0		171.3	172.2	1.141	165.0*	163.9	164.6	165.8	151.7		145.2		127.6		
GROUND SUR- FACE TO WATER WATER SURFACE SURFACE IN FEET IN FEET	SAN FRANCISCO BAY REGION EA		B=19=64 138.2 =122.4	142.2	103.4	102.1	97.7	101.6	105.9		122.8	137.6	140.0	145,3	244.0* -106.0	249.3	252.0%	249.9	243.7	231.8	1.022	5 6 7 7 7 7	4 7 1 C	0.040	237.34	242.5	246.94	*0•0sz	171.9 68.0	169.9	171.3	172.2	1.141	165.0*	163.9	164.6	165.8	151.7	173.5	145.2	136.4	127.6	121.5	

VOW 101

GROUND SUR

GROUND WATER LEVELS AT WELLS

	AGENCY SUPPLYING DATA		2400	5000	2000
	WATER SURFACE ELEVATION IN FEET		8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		7
	GROUND SUR. FACE TO WATER SURFACE IN FEET	2-09.02	168.9 172.6 180.9 157.2 158.2 158.2 148.0 142.7 154.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.2		1940.9 19
	DATE	EGION	7 - 28 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 6	200-21-0 200-200-200-200-200-200-200-200-200-2	4 4
	GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION REA	0 * 2 £	ጉ • በ ጉ	105.0
C-3 VELS AT WELLS	STATE WELL NUMBER	SAN SOUTH BAY AREA	075/01E- ⊎L 1 M	075/01E- 90 2 ×	075/01E-16C 5 8
TABLE C-3 WATER LEVELS	AGENCY SUPPLYING DATA		0 9 7	2 4 0 0	0 0 4 7 7
GROUND	WATER SURFACE ELEVATION IN FEET			-76.7 -76.7 -78.5 -78.5 -135.4 -135.4 -135.5 -113.6 -111.4 -98.7 -98.7 -98.7 -98.7 -98.7 -98.7 -97.8 -98.7 -97.8 -98.7 -121.3	
	GROUND SUR. FACE TO WATER SURFACE IN FEET	2-09,02	166.3 161.7 151.6 151.6 151.6 140.0 1138.7 138.7 138.7 147.6 147.6 147.6 167.0 167.6 167.6 167.6	1449.7 278.48 278.48 272.85 272.85 272.98 251.98 251.98 251.98 251.98 251.98 251.98 251.98 251.98 272.98 261.48 26	279.5 273.5 273.5 273.5 197.5 196.1 1998.4 1998.4 1998.6 1998.6 1998.6 1998.6 2010.5 200.5 2000
	DATE	REGION	7-22-04 8-21-04 8-21-04 9-29-064 10-20-04 12-23-04 12-23-04 12-23-05 5-24-05 5-24-055 6-24-055 7-24-05	0-20-05-05 0-20-05-05-05 0-20-05-05 0-2	
	GROUND SURFACE ELEVATION IN FEET	RANCISCO BAY	0 • 7 K	140.1	174.0
	STATE WELL NUMBER	SAN F SOUTH BAY AREA	₽ 20C	065/02*=35C l M	075/01E- 1K 1 M

TABLE C-3 GROUND WATER LEVELS AT WELLS

AGENCY SUPPLYING DATA		5 4 0 0	2400	0 0 4 2
WATER SURFACE ELEVATION IN FEET		N N N N N N N N N N N N N N N N N N N	441,3 441,3 441,0 441,0 441,0 1,4 441,0 1,4 441,0 1,4 444,0 1,4 444,0 1,0 444,0 1,0 444,0 1,0 444,0 1,0 444,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 44,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	6.841+ 6.861+ 6.861+ 6.851+ 6.851+ 6.851+ 6.851+ 6.851+ 6.851+ 6.841+ 1.841+ 1.841+ 1.841+
CROUND SUR- FACE TO WATER SURFACE IN FEET	2-09.02	00100 001000 001000 001000 00000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DATE	EGION	7 - 1 - 1 - 1 - 7 - 1 - 7 - 1 - 7 - 1 - 1	59-02-6 59-61-8 59-610	7- 1-01 9-11-04 10-11-04 11-1-04 11-1-04 11-1-04 11-1-04 11-1-04 11-1-04 11-04 11-1-04 11-05 1-
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION EA	0 • • • •	0 * 9 9 *	210.17
STATE WELL NUMBER	SAN SOUTH BAY AREA	075/02E-17H 1 M	075/02C-33C 1 M	2 T 5, 02% - 30
AGENCY SUPPLYING DATA		0 0 * N	000 * 2	0 9 7
WATER SURFACE ELEVATION IN FEET	2		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
GROUND SUR FACE TO WATER SURFACE IN FEET	2-09.02	167 187 187 187 187 187 187 187 187 187 18	22510 22510 22510 22510 22510 22510 22510 22510 2220 222	
DATE	REGION	2007 2000 2000 2000 2000 2000 2000 2000		
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION EA	1.0	0 • 20 7	134.0
STATE WELL NUMBER	SAN SOUTH BAY AREA	075/01E-314 2 M	075/01₩-J5C 1 M	075/02t- /2 1 a

I whether and another and the

CROUND WATER LIVELS AT WELLS

	AGENCY SUPPLYING DATA			5 4 0 0	2600	5400
	WATER SURFACE ELEVATION IN FEET		2	155 155 155 155 155 155 155 155	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.12 1.20
	GROUND SUR. FACE TO WATER SURFACE IN FEET		2-09.02	24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6	6444 6444 6444 6444 6444 6444 6444 644	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	DATE	REGION		7-6-64 9-15-64 9-15-64 10-7-64 10-7-64 10-7-64 11-1 10-7-65 11-15-	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7-7 - 7 9-10-04 9-10-04 9-10-04 9-10-04 9-10-04 9-10-05 10
	GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		144.6	331.2	۵. ۷ ۵. ۵
E C-3 EVELS AT WELLS	STATE WELL NUMBER	SAN	SOUTH BAY AREA	085/01E-13H 1 X	A 1 Hcl-wlo/S80	065/02L-20F 3 R
TABLE C-3 WATER LEVELS	AGENCY SUPPLYING DATA			2400	¢ 4 5 0 0	₹ 4 0 0
GROUND	WATER SURFACE ELEVATION IN FEET			1 1 1 1 1 4 1 2 2 2 2 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	113. 105.
	GROUND SUR. FACE TO FATER SURFACE IN FEET		2-09.02	2013 2019 2019 2019 2019 2019 2019 1019 1019	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	69 10 10 10 10 10 10 10 10 10 10
	DATE	BAY REGION		200-12-4 200-12-4 200-12-4 200-12-1 200-12-1 200-12-1 200-12-1 200-12-2 200-12-2 200-12-2 200-12-2 200-12-2 200-12-2 200-12-4 200	20-12-10 20-02-10 20-02-10 20-02-10 20-12-20 20-10-20 20-12-20 20-10-20 20-	7- 2-04 8- 4-05 9- 4-05 9- 4-05 9- 4-05 10- 2-05 11- 2-05 11- 2-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1
	GROUND SURFACE ELEVATION IN FEET	RANCISCO		۲H.0	6 ° 0 • 6	207.0
	STATE WELL NUMBER	SAN F	SOUTH BAY AREA	075/02*= 4H 1 M	075/02*-224 l M	085/01E- 74 2 M

111

	WELLS
	AT
TABLE C-3	WATER LEVELS
	GROUND

AGENCY SUPPLYING DATA		0015	9100	0015		5100		5100 00
WATER SURFACE ELEVATION IN FEET	0	303.5 368.1	545.0 540.6	195.0 179.0 179.5 194.0 202.1 204.7 204.7 212.2 204.7	2115.1 2011.2 2013.6 4 4 2 4 6 6 6 6 1 9 6 6 1 9 6 6 1 1 8 6 6 1 1 9 6 1 1 9 1 1 1 9 1 1 1 1 1 1 1	2012 2012 2012 2012 2012 2012 2012 2012	208.2 208.3 204.5 202.5	2 4 2 - 2 4 2 - 2 4 2 - 4 2 - 4 2 - 4 2 - 4 1 - 1 - 2 2 2 - 4 - 1 - 2 - 2 - 4 - 2 - 2 - 4 - 2 - 2 - 2 - 2
GROUND SUR- FACE TO WATER SURFACE IN FEET	2-10.00	113.4 48.8	4°1	136.7 144.7 141.7 141.7 127.2 112.7 117.0 1117.0 1117.0	106.6 110.2 118.3 123.0 127.2 134.9	88.2 89.1 89.8 45.2 45.2 7.45.7 7.45.7 7.45.7 7.5.7	11.1 71.2 75.4 75.7 75.7	124,34 127,84 115,9 115,9 105,1 105,1 101,1 12,5 12,5 73,5 73,5
DATE	IEGION	9= ()=64 3= ()=64	4- 0-64 3- 0-65	7-30+64 4-27-64 10-29-64 11-29-64 11-29-64 11-29-64 1-39-65 1-49-65 1-49-65 1-49-65 1-49-65 1-49-65 2-24-465 2-24-65 2-24-65	4184405 5184405 6130405 81805 81805 81805 81805 81805 81805 81805 81805 81805 81805 81805 81805 8180	7 - 3 () - 64 8 - 2 7 - 64 9 - 2 4 - 64 1 0 - 2 4 - 64 1 1 - 2 5 - 64 1 - 2 5 - 64 1 - 2 5 - 64 1 - 2 8 - 65 2 - 2 4 - 65 3 - 3 1 - 65 2 - 5 4 - 65 3 - 3 1 - 65	4 - 1 - 4 - 1 - 4 - 4 - 4 - 4 - 4 - 4 -	7-30-64 8-27-64 9-24-64 10-24-64 11-25-64 12-30-64 12-24-65 2-24-65 2-24-65 2-31-65
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	4 T C • 1	ۇ.خخخ	7 • 1 5 °		ሆ. ም ጠ		0 ° 7 ĉ.
STATE WELL NUMBER	SAN LIVEROORE VALLEY	025/01#=26C 1 M	025/046-450/420	035/01E- 7.0 1 M		035/01E- 4J 2 2		u3s/01t- 4H 2 M
AGENCY SUPPLYING DATA		2400			2400		2400	
WATER SURFACE ELEVATION IN FEET		227.9	215.2 215.2 215.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	276.5 276.5 206.4 2061.9 201.9	4446 4446 4446 4446 4446 4446 4446 444	256.1 256.1 253.8 252.4 250.9 250.9	2000 2000 2000 2000 2000 2000 2000 200
GROUND SUR FACE TO WATER SURFACE IN FEET	2-09,02	11.8	24.5 24.5 23.8 23.8 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	00000000000000000000000000000000000000	8 4 4 5 5 9 9 4 4 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1477 14777 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40000000000000000000000000000000000000
DATE	REGION		9- 2-04 10- 8-64 11-10-64	2	7- 9-64 8-12-04 9-17-04 10- 9-64 11-13-64 11-13-64	2-12-05 3-17-05 4-12-05 5-12-05 7-13-05 7-13-05 9-17-05 9-15-05	7-7-64 8-10-64 9-15-64 10-8-64 11-10-64 12-7-64	1-17-05 2-17-05 3-18-05 5-18-05 5-18-05 5-18-05 7-18-05 7-18-05 7-18-05 7-18-05 7-18-05 7-18-05 7-18-05 7-19-05
GROUND SURFACE ELEVATION IN FEET	N FRANCISCO BAY REGION	1.452			d.4.b		241.6	
STATE WELL NUMBER	SAN SOUTH BAY AREA	085/02E-220 1 M			0¥5/02t- 1J 1 ™		095/Udf- 1m 1 m	

LANCELLE CONTRACTOR

CHOUND WATTE LEVITS AT WELLS

									-	0										0																
		AGENCY SUPPLYING DATA			5100			0015	0010	5100										5100																
5		WATER SURFACE ELEVATION IN FEET		0	214.3 217.5 210.2	197.6	r • * 0 1		422.2	390.6	1976.1 1906 1906	369.5	341°8 344.8	402.4	404 8	405.4	400.5	401.2		235.1	226.1	226.3	230.3	235°U	C \$ 7 * 2	252.6	257.7	256.5	1.00% 3.11%	0 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	237.1					
1.02		GROUND SUR FACE TO WATER SURFACE IN FEET		2-10.00	113.7 110.5 117.80	130.2	1.0041	• •	* 1∠8•8*		2.511 2.511									1/6.9	2°541						154.3									
101111		DATE	NOID		3-31-65 4-28-65 5-26-65	7=28=65 7=28=65 8=27=65	50=05=A	1 - 0	3= 0=65	7-30-64	8-51-04 9-54-64	11-25-64	1-24-64	2=24=65	4=23=05	5-20-05 6-30-65	7-28-65	8-27-65		1-30-64	8-21-84	10-29-64	11-25-64	12-30-64	1-66-65	3-3-400	4-58-65	5-26-65	20-05-4	14-0						
		GROUND SURFACE ELEVATION IN FEET	FRANCISCO BAY REGION		328.0			202.02	A*TCC	0.405										4 l ∠ • 0																
	3LE C-3 LEVELS AT WELLS	STATE WELL NUMBER	AN	LIVERMORE VALLEY	03S/01E-19A 3 M			~ ~	M T HAT-391/500	035/02E-16E 2 M										035/026-140 1 M																
	TABLE WATER LE	AGENCY SUPPLYING DATA			5100		5100									0014		0015												5100						
N	GROUND	WATER SURFACE ELEVATION IN FEET			272.2 250.6 250.1	246.2	232.7	240°8	252.7	262.7	270.3	260.7	255.4	243.2		20052 4.E45		2.112	195.2	141.2	204.7	207.2	212.7	221.6	2.555	224.2	216.1	205.202	17/ • 6	8.99.8	187.5	178.3	166.3	199.4	204.3	207.8
		GROUND SUR- FACE TO WATER SURFACE IN FEET		2-10.00	84 • 8 106 • 4 106 • 4 100 • 4	117.3	136.0	127.9	116.0	106.0	5°701	108.0*	118.5*	125.5		104.5		147.84	151.8	155.8	147.5	139.8	134.3	125.8 112 H	114.8	122.8	130.9	141.8	T * A * D	128.24	140.74	144.7	141.7	128.7	123.7	120.2
		DATE	REGION		4 - 28 - 65 5 - 28 - 65 6 - 30 - 65	8-27-65 9-30-65	7=30=64	19-17-0	10-69-04 11-25-64	1=28=65	3-31-40 3-31-65 3-41-65	5-65-65	6-30-65 7-28-65	8-21-65 9-30-65		9- 0-04 3- 0-65		1-20-04 1-27-64	9-54-64	10-29-64		1-28-65	2-24-65	10-15-5 14-16-4		6=30=65	1-28-65	8-612-8 9-12-65		1-30-64	8-27-64	9-54-64	10-29-64	12-30-64	1-24-65	2-24-65
		GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY		357.0		364.7									2.0.5		347°0												325°0						
		STATE WELL NUMBER	SAN	LIVERMORE VALLEY	03S/01E-9R 2 M		035/016-100 2 4									M I HII-JI0/500		035/01C=1/H I M												035/01E-14A 3 M						

21111100 V2+0 21111100 V8+0

AGENCY SUPPLYING DATA			5050								5050												1	0505	5050	0.000													4050			
WATER SURFACE ELEVATION IN FEET		0	£.94	7 · A+	46.0	4 1. a	10°0				61°H	67.6	1 - 4 4 H - 4 4	67.5		69.3	64°0	69. K	68.8	68.6	68°.3	67.1			41.0	0 4	15.7	15.4	10.8	1001	17.9	16.9	17 4	13.1	16.4	16.0	16.1	14.0				
GROUNO SUR. FACE TO WATER SURFACE IN FEET		2-22.00	58.7	1.94	62.0	62°54	61.24	00.46-6			12.2	12.5	0. E	12.5	بە	10.7	11.0	10.0	11.2	11.4	11.7	12.9		R	34.2	1 4 1	14.3	14.6	19.24	V • D 1	12.1	13.1	12.6	16.9*	13.6	14.0	13.9	16.0	*	•		
DATE	REGION		4-2]-65	5-19-65	6=24=65 7=21=65	69=11=R	9-24-65				7-23-64	8-V-0-04	10-21-64	11-19-64	12-22-64	1-40-65	2-18-65	101/117	5-19-65	6=24=65	19=11=1	9-24-65		50=11=F	3-17-65	7-2 1-64	8-20-64	9-51-64	10-21-64	11-14-04	1-20-65	2-14-65	3-1/-05	5-19-65	6-24-65	7-21-65	9-11-92	9-24-65	3-16-65			
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		108.0	•							0.04													80° N	2.41	30.0													40.0			
STATE WELL NUMBER	SAN FF	HALF MOON BAY TERRACE	06S/05W-8B 1 M					SAN GMEGURIN VALLEY			0/5/05w=13E [M												OTC/OFWEILS I H	-	075/05w-15t 1 M	075/054=15F J M	9												075/05w=15H 2 M	,		
AGENCY SUPPLYING DATA	_		0505	0	0000	5050													0505	1050	0000												0505	5050								and the second s
WATER SURFACE ELEVATION IN FEET			28.4			26.9	24 a J	24.0	1.00	25.1	36°5	30°5	34.9	35.0	31.5	5.15	31.0	C 4 4 7	15.b	101	0.04	59.64	59.1	58°6	56.1	58.0		56.5	61.3	61.2	0.00		34°5	د،15	47-1	5.54	53.6	5 ° F C	64°0	6 - F - C - C - C - C - C - C - C - C - C	- • · • •	the second s
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-22.00	24.6		A	دع. ا	÷1.55	26.0	0.45	6.42	13.5	14.5	15.1*	15.0	18.5	18.8	19.0	20.01	30.5	10.4	30.0	30.4	30.9	31 . 4 4 . H 4	33.9	32.0	50.0	2.5	28.7	28.8	4 • FT	J	°.	56.7	60°9w	58.1	54.4	54 ° B	4 4 ª 0 #	60.0	6.04	
OATE	BAY REGION		3=11=65	- 4-0 - F	10-0-1	7-23-64	H=20=04	9-21-64	1]=14=64	49-22-21	1-20-65	2010102	4-41-65	5-14-65	6-24-65	1-21-65	8-1/-92 0-34-46		3-11-65	7-23-64	N-20-64	4-21-64	10=21-64	1-14-04	1-20-65	2-18-65	59=17=5	5-14-65	6-24-65	1-21-05	19=1/1=2 7=/4=61		3-11-6	7=23=64	H=20-64	9-21-6	10-21-04	1]=14=04	12=22=64	1-20-05-05	3-11-65	
CROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY	10	() 4 e ()	0 7 7	0.00	50.0													4 th # U	0.00													0.06	100.0								
STATE WELL NUMBER	SAN F	HALF MOON BAY TERRACE	055/05w-19J 1 M	055.005301 1 M		055/05*-24F 4 M													M 1 NAZ-450/550	05-1-3/M-2010-1-2	4												₩ 1 CO1=*QO/SCO	M I HR -xc0/59(

GROUND WATER LEVELS AT WELLS TABLE C-3

	AGENCY SUPPLYING DATA			5050					5050									5050											5050	
	WATER SURFACE ELEVATION IN FEET		0	0000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65.9 68.3	66. d 65. y	8.00 9.00 9.00 9.00 9.00	28.5	27.9	- 99 - 92 - 92 - 92	0 9 0 0 0 0 0	50.3	31.1	30.0	29.93	28°5 28°5	17.0	14.8	10.1	29.2	0.05	29.7	8°62	17.0	19.3	25°1 24°3	I4 ° H		
	GROUND SUR. FACE TO WATER SURFACE IN FEET		3-01.00	57.7 57.7 58.0 58.0	1000 1000 1000 1000 1000 1000 1000 100	58•3 55•9	57.4 58.3	57.5 56.6	61.5	62.1 59.6	61.2	51.4 60.2	59.7 54.8	0.0	60.00	60.7	60.7										61.9 62.7	72.2	•	
	DATE	NOID		7-23-64 8-20-64 9-22-64 10-21-64	12-22-64 1-19-65 2-17-65	3-17-65	5-18-65 6-23-65	7-21-65 8-21-65 9-23-65	7-23-64	8-20-64	10-21-64	11-18-64	2-17-65	3-17-65	4=20=65 5=18=65	6-23-65	8-21-65	7=23=64	8-20-64	10-21-64	11-18-64	1=19=65	2-17-65	3-1/-65	5-18-65	6-63-65	7-21-65 8-21-65	v	7- 0-64	
	GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION		12402					0 • 0 5									87.0											1.16	
BLE C-3 LEVELS AT WELLS	STATE WELL NUMBER		SOQUEL VALLEY	M 1 3-01m- 9L 1 W					115/01w-10C 1 M	•								115/01w=15E 2 M										-	W I MCT=MIN/CTT	
WATER LE	AGENCY SUPPLYING DATA]		5050					0505									5050											5050	LOGA
GROUND	WATER SURFACE ELEVATION IN FEET			4 4 4 4 1 4 4 4 4 4 9 0 0 4 4	10.1 16.3 16.4	16.3 16.7	16.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.8	17.0	17.6	18.3	26.8	21.7	24.2	20.1	17.6 17.6 16.3	56.5	55.l	54°4	56.5	1 67	60°3	59.7	0.50 50,50	59.1	56.7 56.7	54.9	52.4	
	GROUND SUR- FACE TO WATER SURFACE IN FEET		2-26.00	•••••• •••••••••••••••••••••••••••••	9 ° 4 9 ° 4 9 ° 4	3.7 3.3	9°5	ំ លំហំ លំហំ លំហំ លំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ ហំ	19.2	0.0%	19.4	10.7	10.2	15.3	12.8 15.1	16.9	19.2	13.5	14.9	15.3 15.3	13.5	9 1	7.9	10.3	* 15 • 2*	10.9	12.2 13.3	15.1	7.6	y
	DATE	REGION		7-23-64 8-20-64 9-21-64 10-21-64	11-22-64 1-20-65 2-14-65	3=17=65 4=21=65	5-14-65	7-21-65 8-17-65 9-24-65	7-22-64	8-20-64	10-21-64	12-22-64	1-20-65 2-18-65	3-17-65	4-41-05 5-14-65	6-24-65	8-17-65	7-23-64	8-20-64	10-21-64	11-14-64	12-22-64	2=18=65	3=17=65	5-13-65 5-13-65	6-24-65	7-21-65 8-17-65	9-4-62	3-17-6	3-11-66
	GROUND SURFACE EL EVATION IN FEET	N FRANCISCO BAY		ح 0 • 0					31.0									70.0											60°0	45.0
	STATE WELL NUMBER	SAN	PESCADERO VALLEY	M 1 H6 -050/580					085/05w=10K 1 M									085/05w=11F 1 M											082/02*=11× C 3	085/05w-11m 1 m
										107																				

	WEL
	AT
TABLE C-3	WATER LEVELS
	GROUND

S

STATE WELL NUMBER	GROUND SURFACE EL EVATION IN FEET	DATE	CROUND SUR FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
CER PAJARO VALLEY	CENTRAL COASTAL REGION	REGION	3-02.00			CENTF PAJARO VALLEY	CENTRAL COASTAL REGION	NOIS	3-02.00		
115/02E-27A 1 M	141.0	7-22-64	1.86	42.3	5050	125/02E-16J ! M	20.5	7-22-64	A		5050
		8-19-64	99.6 99.1	4]。4 4]。6				49=1-P	26.9	= 0 • 4	F
		10-21-64	0.66	42.0				9=22=64 10-21=64	26.0	ຍ ເມືອ ເ	
		11-18-64	97.8	ເມ ອີ ອີ				11-13-64	17.1	4 ° E	
		1-14-65	40°0	1:0 • • • •				12-29-64	20.44	1.1	
		2-17-65	96.1	6 • 5 5				2-17-65	12.6	э. э. ~ т	
		3-16-65	96.6	2 . 2 2				3=16=65	11.7	• 10 • • 0 10	
		5-18-65	97.1 96.3	5°044				4-20-65	11.2	ۍ و د	
		6-23-65	97.6	4.64				5-18-65 4-2-165	21.9	•]•4	
		7-21-65	104.14	36.9				2-21-65	4 • 4 7 • 4	t 0 " M =	
		8-61-65 9-24-65	104.5*	36.5				8-21-65	22.7	- 2.2	
12S/01E=24G 1 M	9.4	7=22=64	25.2	= 15.8	0505	125/02E-31K 1 M	30.0	9-24-65 3-17-65	23.2	P. 4	2100
		8=19=64	1 99 1			136 /016 - 10 1 4		3-1-45	7 1	7 6	0010
		9-25-64	17.0	-7.6			0.0	60-01-r	1+0	3°7)	2100
		10-21-64	16.5	-7.1 1 7		13S/02E= 58 1 M	136.0	7-22-04	142.5	-6.5	5050
		12-24-64	6.9	2.5				8-19-64	142.2	-6.2	
		1-19-65	P • 4	0				9-23-64	141,3	۳°.	
		2-17-65	20 i • •	4° 0					14141	1 • U =	
		3-16-05-4	ກ - ກຸ່	5°°				12-22-64	140.1	1.4	
		5-18-65	15.1	۵.4 ۲.1				1-19-65	137.9	-1.9	
		6=23=65	18.8	5 6				2-17-65	136.6	-0.6	
		7-21-65	18.9	=9°5				19-91-57 19-02-4	131.00 121.00	4 4 4 0	
		8-21-65	17.1	-7.7				5-18-65	1.35.6) († • •	
			2.01	0				6-23-65	137.5	-1.5	
165/066=11E 4 M	36.0	7-22-64	41.24	-5.2	0505			29-17-1 29-12-8	2.241	20°5	
		19-61-D	38.6*	-2.6				9-24-65	140.6	- 0 - 1 - 1 - 1 - 1 - 1	
		10-21-64		7 8 7		135,024-44	0 11	7 7 - C C - E	0	c	0.00
		11-17-64	29.0	7.0			0 ° c 1		18.0	ר יי יי	0000
		12-22-64	<u>ب</u>	,				3 - C - C - C - C - C - C - C - C - C -			
		2-17-05	20.44	14.7				10-21-64	19.1	1 . 1	
		3=16=65	30.6*	1.4				11-18-64	16.5	-1.5	
		4-20-05-4	21.6	14.4				12-22-64	14.3	· · ·	
		5-18-65	27.1	6 ° 8				2-17-65	13.51 2.51	₽ • 1 • 7	
			\$ 5 5 7 7	0.06-				-1	13.0	0.2	
		8-21-65	13.6	*				4-20-4	12.0	0.5	
		9-52-65	31.8*	1.4				5-13-65	13,3	1.1	
				GROUND		WATER LEVELS AT WELLS	S		GROUMD SUR	-	>
		1	CROUND SUR	- WATER	AGENCY		SROUMD SUBLACE	OATE	FACE TO WATER SURFACE	_	SURFACE SUPPLYING

WATER SURFECTION ELEVATION

L	AGENCY SUPPLYING DATA		2400	2400	2400	5050								5050										5050						
	WATER SURFACE ELEVATION IN FEET		260,5	223.7	ć.165	830.H	210.5	208.1	226.6	243.0	246.8 239.0	236.8	236.8	167.8	179.0 175.3	181.7	144.0	207.5	212.8	215.8	204.7	202.6	205.1	1 8 2 , 5	152.2	101.0	182.5	162.5 163.2	183.5	183.5 183.4
n • 7	GROUND SUR. FACE TO WATER SURFACE IN FEET	3-03.01	53+7	85 . 6	90°S	59.2 ¢	19.5 14.3	81.9	63.64	47.0 42.8	43.2 51.0*	5.5	53.62	63.2	75.0*	69.3	66. C	5.64	5.95 5.65	35.2	6 6 6 4	4 ° Q 4	45°9	37.5	37.8	37.9	37.5	10°1	36.5	36 ,5 36,6
	DATE	REGION	3-17-65	3=17=65	3-17-65	7-21-64	9-24-64	11-17-64	1-15-65 2-16-65	3=15=65 4= 0=65	5-17-65 6-22-65	7-20-65	9=24=65	1-21-64	8=19=64 9=24=64	11-17-64	12-21-04	2-10-65	3 = 1 5 = 65 4 - 20 = 65	5-11-65	0122105 7120155	8-20-65	9-24-05	1-21-64	3-14-04	10-20-64	11-17-64	1-19-65	2-16-65	3-15-65 4-19-65
L	GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL RE CLARA COUNTY	314,2	304.3	324.0	290.0								0.152										220.0						
LEVELS AT WELLS	STATE WELL NUMBER	CENT SOUTH SANTA CLAR	09S/03E-34⊍ ¦ ⋈	095/03E-36E 2 M	095/03£-36F 3 M	105/03E- 2K 3 M								105/03±-13J 3 H										105/03E=36E 3 M						
TABLE C-3 WATER LEVEL	AGENCY SUPPLYING DATA		5050		2100	2100	2100			2400	2400	2400	2400	2400	2400											5050	2400			
GROUND V	WATER SURFACE ELEVATION IN FEET		4 - 1		2°4	5.0	4°€			276.5	271.5	273.5	257.5	253.8	261.4	259.7	252.5	251.6	255.2	260.5	264.0	271.3	264.3 266.1	256.5		385.7	263.6			
	GROUND SUR. FACE TO WATER SURFACE IN FEET	3-02.00	17.4	10.5 14.5 14.9	21.8	22.8	26.6	3-03.00	3-03.01	109.2	90.10	105.6*	105.0	75.3	85.64	87.3	* 5 *76	95.44	91.8	86.5*	19.0	15.7	42°24	40°5*		11.9	63.4			
	DATE	REGION	6-23-65 7-21-65	59-17-0 59-17-0	3-16-65	3=16=65	3-16-65			3=16=65	3-10-65	3-16-65	3=16=65	3-17-65	7- 8-64	8=11=64	10- 3-64	11-12-64	1-15-65	2= 9=65		5-11-65	6= 9=65 7=15=65	8=16=65 0-1/-65		3-15-65	3=11=65			
	GROUND SURFACE ELEVATION IN FEET	COASTAL	15.0		20.0	21.8	30 • 0	LEY	A COUNTY	185.7	361.6	1.41E	362,5	1.446	341.0											347.6	321.0			
	STATE WELL NUMBER	CENTRAL PAJARO VALLEY	13S/02E-6B 1 M		135/02E= 6C 1 M	135/02E- 0E 2 M	135/02E- 6E 3 M	GILROY-HOLLISTER VALI	SOUTH SANTA CLARA	0 95∕ 03E-1¢J I ∾	095/03E=21K 2 M	095/03E=22H 3 M	095/03E-23E 1 M	095703E-26P 1 M	- 0											095/03E=298 M	095/03E-340 2 M			

- 23

100

		GROUND
	WELLS	
	AT	
TABLE C-3	EVELS	
TABI	WATER 1	AGENCY
	GROUND WATER LEVELS AT WELLS	WATER
	-	

AGENCY SUPPLYING DATA		5200	2200		5 5 0 0	0025	
WATER SURFACE ELEVATION IN FEET		162.2 167.2 169.2 172.2	160.2 154.2 157.2 159.2 145.0	00000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	164.5 1551.5 151.5 151.5 154.5 136.7 136.7 136.7 136.7 136.7 7	141.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	3-03.01	35.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	ы 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000000	144 14 14 14 14 14 14 14 14 14 14 14 14	0.00
DATE	NOIS	1-18-65 2-15-65 3-15-65 4-14-65 5-17-65	6-21-65 7-14-65 8-16-65 9-20-65 7-20-65 8-12-64	10-1/-04 11-1/0-04 12-01-04 12-15-05 2-15-05 3-15-05 5-1/-05 6-01-19-05 1-055	7 = 20 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	201/1-05 7-12-05 7-12-05 7-12-05 8-10-05 7-20-05-1 7-20-05-1 7-20-12-1 40-12-10 10-12-10 10-12-10	
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION LARA COUNTY	197.2	n • 1 1 2		s•161	2.102	
STATE WELL NUMBER	CENTRAL COA SOUTII SANTA CLARA COUNTY	11S/04E-6B 1 M	115/04E- 61) M		115/046- 64) 3	115/U&t- 6P 2 3	CTS AT WILLS
AGENCY SUPPLYING DATA		5050	0¢0¢	007 5		5050 5400 5200	11111
WATER SURFACE ELEVATION IN FEET		185.1 183.8 183.4 182.8 183.2	140.5 5.041 5.05 1.73.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	2000.0 205.9 205.9 2010.7 201.7 201.7 202.0 202.0 202.0 151.0 151.0	151.0 157.0 157.0 157.0 154.0 174.00	0.001 2.000 2.000 2.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.00000000	0
GROUND SUR FACE TO WATER SURFACE IN FEET	3-03.01	46.6 26.6 26.6 26.6 26.6 26.6 26.6	2 M N N 2 M 2 M N N 2 M 2 M N N N N N N N N N N N N N N N N N N	υυσφυρινη φφη μωταγγάρια 	4 4 1 0 0 0 1 1 1 0 1 2 2 2 2 2 1 0 1 0 1 0	11.0 14.0	
DATE	ION	レート 1	7 = 2 - 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	2115-105 3-125-105 5-125-105 5-125-105 7-122-105 7-122-105 7-122-105 7-122-105 7-122-105 7-122-105 7-122-105 7-122-105 7-121-05	10-11-04 11-12-04 12-21-04 12-21-04 12-12-	1-20-02 1-20-05 1-2	12-21-64
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION GLARA COUNTY	220.0	259.5	r • • >		244°0 241.0 191.5	
STATE WELL NUMBER	CENTRA CENTRA SOUTH SANTA CLARA	10S/03E-36E 3 М	105×045-146 × a	M + 016-1+0/201		105/045-355 M 115/045- 10 A 115/045- 03 M	

0 0 0 0		AGENCY SUPPLYING DATA			5050									5050											0505										
B - + 2 +		WATER SURFACE ELEVATION IN FEET			121.4	116.8 114.9	112.3	117.7	120.0	126.4	121.8	120.5	117.5	121.0	110.8	112.4	c.11	120.7	129.2	133.0	135.I 136.0	134.7	4°551	130.2	178.4		175.7	183.9	172.9	185.5	192.5	195.4	140.2	166.1	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CROUND SUR. FACE TO WATER SURFACE IN FEET		3-03,02	90.2	96°7	94°3	93.9	91.6 85.6	65°S	8°.58	91.1	94.1	0 * * fi	104.2	100.3	97.5	6 ° * 5	91.00 85.8	82.0	74.0	80.3	81.8 0 0 0 0	30 ° 31 30 ° 31 30	101.6	\$	104.3	96.1	107.1*	94.5	87.5	34.6	8.98	9	
***** ***** *****		DATE	GION		1-22-04	8-13-04 V-24-04	10-20-64	1-19-65	2-17-65	4=19=65	5=16=05 6=22=65	7-21-65	9-25-65	7-22-64	8-19-64	9-24-64	11-17-64	12-22-04	2-11-2	3-16-65	4-14-65	6-22-65	29-12-1	9-25-65	7-22-64	8-19-64	9-29-64	11-17-64	12-22-64	1-19-65 2-17-65	3-16-65	4-20-02	6-22-65	4-20-65 9-25-65	
401.7		GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION	13	211.6									215+0											240.0										
115×04r - of 2 -	3LE C-3 LEVELS AT WELLS	STATE WELL NUMBER	CEI	SAN BENITO COUNTY	125/056-10H 1 M									125/05E-12M 4 M											125/05E=33A 1 H										
000	TABLE WATER LE	AGENCY SUPPLYING DATA			5200					5050												1050											1010		
V VN VN V • • • • • • • • • • • • • • • • • • •	GROUND	WATER SURFACE ELEVATION IN FEET			151.7	157.7	157.7	10101	140.7	1.9.1	140.7	141.2	144°0 145°1	154.8	1.001	164.6	150.9	140.9	146.0		5 2	1.122	218.4	212.5	212.5	211.4	233.1	5.3.3	2.665		224.4	231.4	117.9		
1/11:		GROUND SUR FACE TO WATER SURFACE IN FEET		3-03.01	0°0° 0°0°		6 4 4 0 6 4 4 0 7 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	53.0 0	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	39°9	42.3	37.8	15°0 13°0	24.00	10.0	14.24	14.0	32.1	33.0		3-03-02	34.6	37,03	40°54	43°54	44.3	22.6	22.4	2.55	-99	20° 24	24 . 34	35°0		
44408 20200 11111 1727 11111 1727 11111 11111 11111 11111 11111		DATE	REGION		1-10-05	3=15=65 4=10=65	5-1/-65	59=61=1	59-02-6	7-21-64	8=] 7=04 9-54=04	10-20-64	11-17-6* 12-21-64	1-14-65		20-21-4	20-71-2 20-72-0	7-20-65	4-20-65 4-24-65			7-22-64	8-19-64	9-24-64 10-20-64	11-1/-64	1614104	2-17-65	3-16-65	101011115	6-22-65	8-20-65	4-2-42	3- U=b5		
		GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL RE	ARA COUNTY	201.7					174.0											00.417	7.442											ب <i>></i> ح 1		
		STATE WELL NUMBER	CEN	SOUTH SANTA CLARA	11S/04E-6P 2 M					115/04t- dk 2 M											SAN HEWITO COU.	115/05t-13U 1 4											125/045-20C 4		

0 - 1 - 0

	WELL
	AT
TABLE C-3	LEVELS
TAB	WATER
	GROUND

ŝ

AGENCY SUPPLYING DATA		2100	2100		2100	2100									2100		2100	2100						
WATER SURFACE ELEVATION IN FEET		37,3	55.7 60.2	1	0.0		-27.1	= = = = = = = = = = = = = = = = = = =	00°	= 2 • 4 3 • 4	-16.1	-2H.1	- 24 . 3	2	70.7 72.6	04	181.2 189.0		0 140	187.3	0.641	208.9	214.0	224.1
CROUND SUR- FACE TO WATER SURFACE IN FEET	3-04.01	67.7 S	54 ° 3 49 ° 8	3= 4.	11.0 9.4	8	5 96.7 92.4	77.6	65•0	71.4	85.1 \$	5 07.1	63.3	3-04.02	110.3 108.4	3-04.04	95.8 98.0	\$	5 197. H	185.7	172.4	164.1	155.4	148.9
DATE	NOIS	12-18-64 4- 1-65	12-17-64 3-30-65	AUUIFER	12- 7-64 3-18-65	7-16-64	8-19-64 9-13-64 10-15-64	11-18-64 12-15-64	2-17-65	3-25-65	5=18=65 4=14=65	7-18-65 H-15-65	9-17-65		12-16-64 4- 6-65		12- 4-64 3-25-65	7=15=64	8-17-64	10-14-64	12-19-64	1-19-65	2-16-65	4-20-65
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION AREA 180 FOOT AQUIFER	125.0	110.0	400 F001	11.0	69 0								EA	0.141	CONE	277.0	373. 0						
STATE WELL NUMBER	CEN PRESSURE AREA 1	155/04E-33A 1 M	165/04E-11 U 1 M	PHESSUHE AREA	135/026-314 1 M	145/03E-18J 1 M								EAST SIDE AHEA	165/056-17A M	ARHUYO SECO	185/066-15 M 1 M	195/06E-11C 1 M						
AGENCY SUPPLYING DATA		5050						5101				2100	2100		2100								2100	
WATER SURFACE ELEVATION IN FEET		194.1 189.6	170.2 170.2 179.8	189.1	191.5	192.7	179.6 170.7	265.9				-5.1 -3.2	+ ° 0 =	2 •	-14.2		10.4	2.1		−12,8			8°4	10.3
GROUND SUR. FACE TO WATER SURFACE IN FEET	3-03.02	108.9 113.2	127.0 123.8 123.2	113.9	112.4 111.5 S	110.3	123.4 132.3 5	59°6	3-04.00	3-04.01		15.7 13.8	23.4	22.8	\$ \$ 2-04	1 5 5 1 5 1 5 7 1 5 7 1 1 5 7 1 5 7 1 1 5 7 1 1 5 7 1 1 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34.6 31.6	54.0 39.9	en en	54°8 4	- 149	ş	49.64	47.7
DATE	NOI	7-22-64 8-19-64	10-20-04 10-20-64 11-17-64	1-19-65	2-11-2 3-16-65 4-20-65	5-18-65 6-22-65	7-21-65 8-20-65 9-25-65	3= 0=65				12-10-64 3-25-65	12- 9-64	3-22-65	7-16-64 8-18-64 9-13-64	10-15-64	1-15-64 1-18-65	39-63-62	4=20=65 5=18=65	6-16-65 7-14-65	8-15-65	9-11-62	12-16-64	3-24-65
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION OUNLY	303.0						325.5		80 FOOT AQUIFER		10.6	0.65		42.0								50.0	
STATE WELL NUMBER	CENTRA SAN BENITO COUNTY	125/05E-35N 2 M						135/054-110 1 M	SALINAS VALLEY	PRESSURE AREA 180		145/026-3C M	145/026-15L 1 M		155/02t- lu l M								155/03E-16M 1 M	

Contractor North Contractor

A LA LAUM

4 L V 8

C. NOTIFICIAL P

WALLE VELS AT WELLS

1

~ ----- 1

GNOOND

NA10 1010

		AGENCY SUPPLYING DATA		2100		1114	1114	1115	5112	5117	1110	1115	5112	1114	5117	1115	1114	1114	7114	
00		WATER SURFACE ELEVATION IN FEET		349°0	96	568.0 565.7	563.2 565.2	532.0 532.8	554.1 554.7	752.4	1167.0 1195.1	837.4 839.7	502.0 583.0	501.2 581.6	545,0 455,0	04200 1143.6 1124.6	5.8511 9.1211	1149.1 1148.5	622°5	0.000
00 10 10 10		GROUND SUR. FACE TO WATER SURFACE IN FEET	3-04.05	73•0 \$	3=04.06	52+0 54+3	39.4 38.1	33+0 32+2	62.7 62.1	17.6	38°0 29°9	57.6 55.3	78.0 57.0	11.8 57.4	204.0	10400 41.2 60.4	36.8 33.1	68.9 69.5	52 e	3.04
10000000000000000000000000000000000000		DATE	CION	12- 7-64 3-14-65		4 - 5 - 64 4 - 5 - 65	4 3- 0⊾=9 2 3 =2	9-30-64 4- 5-65	9=30=64 4= 5=65	9-30-64	10- 1-64	10= 1=64 3=3()=65	40-07-6 40-2-6	9=30=64 4= 5=65	10- 1-64	4= 1-65 10= 1-64 4= 1-65	10- 1-64 4- 7-65	10= 1=64 4= 7=65	10= 1=64	12 21 0
		GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION AREA	472.0	NICAN	620.0	603.5	() • coc	4°019	770.0	1225.0	0°479	64U。O	0.44.0	144.0	1185.0	1165.0	1214.0	0,478	
	C-3 VELS AT WELLS	STATE WELL NUMBER	CENT UPPER VALLEY AREA	225/10E-16K 1 M	PASU HUHLES B	245/10E-11C 1 M	245/11E-25W 1 M	245/11E-33R 1 M	245/11E-35J 1 M	245/12E-17N 1 M	245/15E=33C 1 M	255/11É-350 1 M	255/126-11J 1 M	255/126-17H 1 M	255/126-26K 1 M	255/13t-11E 1 M	255/16≿=17L 1 M	25S/16E-30M 1 M	265/12E- 4N 1 M	
	TABLE C-3 WATER LEVELS	AGENCY SUPPLYING DATA		2100			2100						2100					0012		0012
10 - 9	GROUND	WATER SURFACE ELEVATION IN FEET		219.6 212.4	205.2	50		227.4 224.0 224.0	234.5	232.5	240.9	225.4		270.0	274.5 274.5	271.7	263.9	266.0		378.0
1 . 1 .		GROUND SUR. FACE TO WATER SURFACE IN FEET	3-04,04	153.4 160.6	167.8 161.7 \$	3=0440	v9 v9	87.6 86.0 81.5	9 9 1 9 0 1 9 1 1	82.5 H].7	24 - 14	92.8 89.6	9 A 4	661			8 73.1 8	71.0	yn.	52.0
		DATE	NOISE	5-17-65 6-15-65	7-18-65 8-15-65 9-16-65		7=15=64 H=17=64	9-13-64	1-18-65	4 = 0 = 4 0 = 0 = 4 0 = 4 0 = 4	5=17=65 6=15=65 7=14=65	8=15-65 9-16-65	7-15-04 8-17-64 0-13-64	10-14-64	1=10=03 1=13=65 2=16=65	4 = 5 4 = 5 4 = 6 5 = 7 5 = 6 5 = 7 5 = 7	6=15-65 7=15-65 8-15-65	9-16-65 12- x-64	3=22=65	12- 7-64
		GROUND SURFACE ELEVATION	CENTRAL COASTAL REGION CONE	373.0		AHEA	315.0						337.0					0.445		400°0
		STATE WELL NUMBER	CENT RA	19S/06E-11C 1 M		UPPEH VALLEY AMEA	195/07E-10P 1 M						205/04t- 5H 1 M					M 1 MM - 300/310		215/10E=32N 1 M
		h																		

	AT WELLS
IABLE C-3	WATER LEVELS
	GROUND

AGENCY SUPPLYING DATA		5117	5117	7115	1115	1110	5117	5117	1114	5117	5112	1114		5005				
WATER SURFACE ELEVATION IN FEET		195.0	635°4 441°6	622。U 624。1	1135.9 1147.6	6.1117.6 4.1119.6		1391.6 1391.6	894°8 894°2	911.4 913.1	851.5 871.1	984 . C		-6.9 -7.9 -7.7	- 3.8	40.7	-5.7	-6.6
GROUND SUR. FACE TO WATER SURFACE IN FEET	3-04,06	10.0	14.6 6.2	2.6 55	63.6 51.7	77.4 75.5	\$\$ \$\$	4 Cl = 0 4 cl = 0 4 cl = 1	16.9	16.6	68.5 48.9	12.8	3-04.08	126.8 127.8 127.6	125.6 123.7 121.9	120.3 120.6 123.2	123.9 125.6 127.8	127.2
OATE	NOIDE	3=24=65	10- 4-64 3-30-65	10- 4-64 3-30-65	10- 4=64 4-13-65	10- 4-64 4-13-65	10= 4=64 4=13=65	10- 1-64 4-14-65	3-24-65	10- J-64 3-29-65	10- 9-64 3-24-65	10- 4-64 3-24-65		7-00-64 8-00-64 9-00-64	10-00-64 11-00-64 12-00-64	1-00-65 2-00-65 4-00-65	5-00-65 6-00-65 7-00-65	8-00-65 9-00-65
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION BASIN	805.0	0•058	854 ° 6	1199.5	0.4411	1150.0	1440.0	1.016	0 • 4 7 6	920.0	1002.0		119.9				
STATE WELL NUMBER	CENTR PASO ROBLES BASIN	5	-	285/126-146 1 M	285/13E= 4K 1 M	2851136- 4K 2 M		285/16t-23M 1 M 205/13t- 55 2 2		CASTLAR - DK C M	295/13E- 6A 1 M	295/136-19H I M	SEASIDE AREA	14S/02E-31M 1 M				
AGENCY SUPPLYING DATA		7114	5112	5117	5117	5117	1114	5117	1115	5117	5117	-	7112	5112	5117	5112	7114	2112
WATER SURFACE ELEVATION IN FEET		643.0 654.3	765.2 779.6	633,3	932.2	946.4 042.1	0.4% 0.4% 0.4% 0.4%	0.03.5 045.0	1014.0 1037.0	726,5	740°5	019.7	ດທ	ъ. • •	۰. د د	1196.1 1196.5	616.9	175.3
	10	• •					1001	10.	10	72	74	101	10-04.01 2.0201	1064.9	1133.3 1126.6	119	10	
GROUND SUR FACE TO WATER SURFACE IN FEET	3~04,06	1/5.0 163.7	14°01		151.0 65.6	71.6 92.9 107 /			119.0 10 96.0 10	21.5 72	7.5 7.4	T	56.0 1049. 54.5 1050.	65.1 1064 57.1 1072	21.7 1133 28.4 1126	58.9 119 58.5 119	د د چ	29.7
GROUND SUR FACE TO WATER SURFACE IN FEET				9-64 171.7	(49 - C	4= 7=65 71.65 10 7=64 92,9 1 0 7=64 92,9	30.5 1 30.6					10.3						10- 4-64 29.7
	CENTRAL COASTAL REGION 3-04,06 PASO ROBLES BASIN	1/5.0 163.7	H=64 34.8 4.90.4	9-64 171.7	(49 - C	7=64	4=64 30.5 1 1=65 30.5 1	d=64 106.5 1 4=65 67.00 1	119.0	21.5	7.5	4-13-65 10.3 1	56.0 54.5 1	65.1 57.1	21.7 28.4	58.9 58.5	د ط•اً	4-64

anound your watter watter

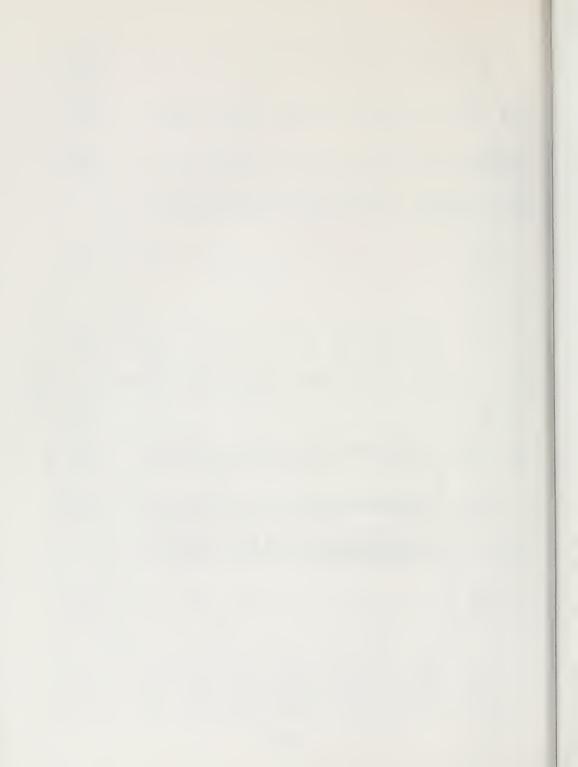
GROUND WATER LEVELS AT WELLS

2.2	2.10	6.2-	
1000	1250.	127.2	
5-00-68	6=00-65	2=00-05 8-00-05 9-00-05	
	-		_
N 1 1 1		5111	
	7.010	710.3	
0	fi = 1	1.00	
017 104	0012110	**-? -0*	
2=105		0 * 500	
		1000/1141-101 A 2	

TABLE C-3 GROUND WATER LEVELS AT WELLS

AGENCY SUPPLYING DATA

WATER SURFACE ELEVATION IN FEET


GROUND SUR FACE TO WATER SURFACE IN FEET

DATE

GROUND SURFACE ELEVATION IN FEET

> STATE WELL NUMBER

															_										
AGENCY SUPPLYING DATA			5005																2100	2100	2100	2100		5102	
WATER SURFACE ELEVATION IN FEET			33.9	33.6	33.9	33.8	36.5	39.0	38.1	38.1	37.4	34.6	34.9	31.9	31.7	35.7	0		56.1	54.9	84.5	125.0	0	-51,7	-42.2
GROUND SUR FACE TO WATER SURFACE IN FEET		3-04.08	110.7	111.0	110.7	110.8	108.1	105.6	106.5	106.5	107.2	110.0	109.7	112.7	112.9	108.9	3-07.00		18.9	27,1	24.5	15.0	3-26.0	81.7	72.2
DATE	CION		7-00-64	8-00-64	9-00-6	10-00-64	11-00-64	12-00-64	1-00-65	2-00-65	4-00-65	5-00-65	6-00-65	7-00-65	8-00-65	9-00-65			4-14-65	4-14-65	4-14-65	4-14-65		11-12-64	3-18-65
GROUND SURFACE ELEVATION IN FEET	WTRAL COASTAL R		2 771	144°0															75.0	82.0	109.0	140.0	RACE	30*0	
STATE WELL NUMBER	CE	SEASIDE AREA		-1													CADMET WATTEV		16S/01E-16L 1 M	16S/01E-22E 1 M	16S/01E-23F 1 M	16S/01E-25B 1 M	WEST SANTA CRUZ TER	115/2W-22K 1 M	l.
	GROUND SUR WATER GROUND SUR WATER SURFACE SURFACE SURFACE DATE DATE SUFFACE INFECT IN FEET IN FEET	CENTRAL COASTAL REGION IN FET DATE CROUND SUR WATER SURFACE DATE WATER SURFACE IN FET IN FET IN FET IN FET IN FET	CENTRAL COASTAL REGION CENTRAL COASTAL REGION AREA DATE GROUND SUR WATER DATE FACE VATION SURFACE INFECT INFECT CENTRAL COASTAL REGION 3-04,08	EL CROUND SUR ALE CROUND SUR WATER CROUND SUR ALE CROUND SUR ALE VATION SURFACE LEVATION UNFEET WATER WATER CRUTCH INFEET IN FEET IN FEET CRUTCH CRUT	CENTRAL COARDING CAROUND SUR SURFACE CAROUND SUR SURFACE WATER SURFACE LINFFET DATE CAROUND SUR SURFACE WATER SURFACE CENTRAL COASTAL REGION 3-04.08 3-04.08 AREA 7-00-64 110.0 33.9 1 M 144.6 7-00-64 110.0 33.9	ELL GROUND GAROUND GAROUND SUR WATER RUFFACE SUBFACE SUFFACE SUFFACE WATER WATER ATER IN FEET DATE DATE WATER WFEET WFEET IN FEET DATE DATE DATE OF 0.08 DE AREA 30.064 110.7 33.9 1 M 144.6 7-00-64 110.7 33.9	ELL GROUND SUR GROUND SUR WATER ELL SURFACE SURFACE SURFACE INFECT ON CONTRACE INFECT ON THE CARE INFECT ON CONTRACE SURFACE ELEVATION 3-04.08 DE AREA 7-00-64 110.7 33.9 1 M 144.6 7-00-64 110.7 33.9 1 0-00-64 110.7 33.9 1 0-00-64 110.7 33.9	LL CROUND DATE GROUND 3/R WATER ELL SURFACE SURFACE SURFACE NATER IN FEET NIFFET NIFFET NIFFET IN FEET NIFFET NIFFET NIFFET CENTRAL COASTAL RECION 3-04,08 DE AREA 3-00-64 110.7 33.9 9-00-64 110.7 33.9 9-00-64 110.7 33.9 9-00-64 110.7 33.9	ELL GROUND GAR GROUND 5UR WATER CAROND 5UR WATER CAROND SUFFACE ELEVATION LIFECT DIRACCE ELEVATION SUPRACE ELEVATION SUP	ELL GROUND SUFFACE SUFFACE INFECT CATE SUFFACE INFECT WATER SUFFACE INFECT WATER SUFFACE INFECT CENTRAL COASTAL REGION 3-04.08 33.9 DE AREA 7-00-64 110.7 33.9 I M 144.6 7-00-64 110.7 33.9 I M 144.6 7-00-64 110.7 33.9 I M 144.6 1-00-64 110.7 33.9 I M 12-00-64 110.7 33.9 33.9 I = -00-64 110.7 33.6 33.6 I = -00-64 110.7 33.9 33.9 I = -00-64 100.8 36.5 33.1 I = -00-65 100.6 33.6 33.9	ELL GROUND SUFFACE SUFFACE IN FEET DATE FACE TO SUFFACE IN FEET WATER FACE TO SUFFACE IN FEET WATER FACE TO SUFFACE IN FEET DE AREA DATE DATE IN FEET DATE ALEA SUFFACE IN FEET IN FEET DE AREA DE AREA 7-00-64 110.7 33.6 DE AREA 1 M 144.6 7-00-64 110.7 33.9 1 M 144.6 2-00-64 110.7 33.9 1 1 M 12-00-64 100.6 39.0 1 36.5 1 -00-65 100.6 100.5 38.1 2 38.1	LL GROUND SUPPORT DATE SACE SUPPORT GROUND SUPPORT WATER SUPPORT ELL SUPPORT DATE SUPPORT SUPPORT SUPPORT INFECT SUPPORT SUPPORT SUPPORT DE AREA 3-00.064 110.7 33.9 I M 144.6 7-00-64 110.7 33.9 I M 140.6 7-00-64 10.8 36.5 I 100.06.5 100.1 33.4 39.1	ELL GROUND SUFFACE IN FEET CATE SUFFACE IN FEET WATER SUFFACE IN FEET WATER SUFFACE IN FEET CENTRAL COASTAL RECION 3-04.08 33.9 DE AREA 7-00-64 110.7 33.9 I M 144.6 2-00-64 110.7 33.9 I M 12-00-64 110.7 33.9 36.1 I M 12-00-64 105.6 38.1 36.2 36.1 I M 2-00-65 100.5 38.1 27.4 37.4	ELL GROUND SUFFACE SUFFACE IN FEET CATE FACE TO SUFFACE NUTER ALENTION CROUND SUR FACE TO SUFFACE NUTER N	ELL GROUND SUPPACE SUPPACE DATE SUPPACE GROUND SUPPACE NUPPECE WATER SUPPACE WATER SUPPACE INFECTON JUPPACE ILEVATION JUPPACE ILEVATION DE AREA COASTAL REGION 3-04.08 33.9 DE AREA 7-00-64 110.7 33.9 DI M 144.6 7-00-64 110.7 33.9 1 M 144.6 7-00-64 110.7 33.9 1 M 144.6 7-00-64 110.7 33.9 1 LOD-664 110.7 33.9 38.1 1 LOD-664 110.7 33.9 38.1 1 LOD-665 106.5 38.1 36.4 2-00-65 101.0 34.9 34.9 5-00-65 101.0 34.9 34.9 5-00-65 100.0 50.0 34.9 34.9	ELL GROUND SUFFACE FACETO INFERT MATE FACETO SUFFACE FACETON SUFFACE FACETON SUFFACE INFERT WATER FACETO SUFFACE FACETON SUFFACE INFERT MATER SUFFACE FACETON SUFFACE INFERT MATER SUFFACE FACETON SUFFACE INFERT DE AREA CENTRAL COASTAL RECION IN FEET IN FLA 3-04.08 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.	ELL GROUND SUFFACE IN FEET IN	ELL GROUND SUFFACE IN FEET IN STA IN FEET IN F	LL GROUND LATE DATE Excerto INFECT GROUND SUPPLIE FACE INFECT WATER SUPPLIE FACE INFECT WATER INFECT CENTRAL COASTAL REGION 3-04.08 33.9 DE AREA 7-00-64 110.7 33.6 I M 144.6 7-00-64 110.7 33.9 I M 144.6 7-00-65 100.5 38.1 I M 144.6 7-00-65 100.5 33.1 I M 144.6 7-00-65 100.7 33.4 I M 144.6 7-00-65 100.7 34.9 I M 2-00-65 100.7 34.9 34.9 I LOU-65 110.7 34.9 34.9 34.9 I LOU-65 100.6 100.9 34.9 34.9 I LOU-65 100.7 34.9 34.9 34.9	LL GROUND SUFFICE DATE SUFFICE GROUND SUFFICE WATER SUFFICE WATER SUFFICE WATER SUFFICE ELL SUFFICE LEVATION JUP AGE JUP AGE JUP AGE DE AREA COASTAL REGION 3-04.08 JO4.08 JO4.08 JO4.08 DE AREA T-00-64 110.7 JJ04.08 JJ04.08 JJ04.08 JJ04.08 DE AREA T-00-64 110.7 JJ04.08 JJ04.08 JJ04.08 JJ04.08 DE AREA T-00-64 110.7 JJ04.08 JJ04.08 JJ04.08 JJ04.08 JJ04.08 DE AREA T-00-65 110.7 JJ04.08 JJ04.08 JJ04.08 JJ04.08 JJ04.08 DE AREA T-00-65 100.5 JJ04.09 JJ17.7 JL17.7 JL17.70 JL17.00 JL17.10	LL GROUND LATE DATE LATE GROUND LATE LATE MATER LATE LATE WATER LATE LATE WATER LATE LATE WATER LATER DE AREA JUPFACI LATAL COASTAL RECION J-04.08 JUPFACI LATAL J-04.08 DE AREA J-00-64 110.7 JJ.9 JJ.9 DE AREA J-00-64 110.7 JJ.9 JJ.9 DE AREA J-00-64 110.7 JJ.9 JJ.9 DE AREA J-00-65 110.7 JJ.9 JJ.4 DE AREA J-00-65 110.7 JJ.4 JJ.4 DE AREA J-00-65 100.5 JJ.4 JJ.4 DE AREA J-00-65 100.7 JJ.4 JJ.4 DE AREA J-00-65 100.7 JJ.4 JJ.4 DE AREA JJ.0 J.00.0 JJ.7 JJ.9 JJ.4 LEY J J.10.6 JJ.4 JJ.9 JJ.9 JJ.4 LEY J J.07.00 JJ.9 JJ.9 JJ.9 JJ.9 JJ.9 JJ.9<	LL GROUND SURFACE INFECT DATE SURFACE INFECT GROUND SURFACE INFECT WATER SURFACE INFECT WATER SURFACE INFECT DE AREA JUTAL D.0.64 110.7 33.9 DE AREA JUA4.6 7-00-64 110.7 33.9 I M 144.6 7-00-65 100.1 33.6 I M 144.6 7-00-65 100.7 33.1 I M 144.6 10.81 33.9 33.1 I M 144.6 10.81 33.5 33.1 I M 144.65 100.5 33.1 34.6 I M 75.0 4-04.65 100.7 34.6 I M 75.0 4-14.65 10.9 35.1 I M 10.9 4-14.65 27.1 54.9	LL GROUND SURFECT DATE STATE GROUND SURFECT WATER SURFACE SURFACE WATER SURFACE DE AREA JUNNECT JUNNECT JUNNECT JUNNECT DE AREA JOLODE4A 1110.7 333.9 DE AREA JOLODE4A 1110.7 333.9 DE AREA JOLODE4A 1110.7 333.9 DE AREA JOLODE6A 1110.7 333.9 DE AREA JOLODE6A 1110.7 333.9 DE AREA JOLODE6A 110.7 333.9 DE AREA JOLODE6A 110.7 333.9 DE AREA JOLODE6A 110.7 33.9 DE AREA JOLODE6A 110.7 33.9 DE AREA JOLODE6A 100.7 33.4 DE ODOE6A 110.7 33.9 34.9 DE ODOE6A 100.7 34.9 35.7 DE ODOE65 100.7 34.9 35.7 DE ODOE65 110.7 34.9 35.7 DE DOOE65 110.7 34.9	ELL GROUND INFECT DATE EXCETO INFECT GROUND SURFACE FACETON SURFACE WATER SURFACE FACETON SURFACE WATER SURFACE FACETON SURFACE WATER SURFACE FACETON SURFACE WATER SURFACE FACETON SURFACE WATER SURFACE DE AREA CENTRAL COASTAL RECION 3-04.08 33.6 DE AREA 2-00-64 110.7 33.6 1 M 144.6 2-00-64 110.7 33.9 9-00-64 110.7 33.9 9.0 1 LOOD-64 100.6 38.1 36.3 1 LOOD-65 100.5 38.1 36.3 1 LOOD-65 100.7 31.9 37.4 2 COD-65 100.7 31.9 31.7 1 N 75.0 4-14-65 31.7 31.7 1 N 75.0 4-14-65 24.5 84.5 1 N 109.0 4-14-65 24.5 84.5	ELL GROUND INFECT DATE EXCENTION INFECT GROUND SUBPACE INFECT WATER SUBPACE INFECT WATER SUBPACE INFECT CENTRAL COASTAL RECION 3-04.08 33.6 DE AREA 3-004.06 110.7 33.6 I M 144.6 7-00-64 110.7 33.6 0.00-64 110.7 33.6 33.6 1.000-64 110.7 33.9 34.9 0.00-65 110.7 33.9 34.9 1.1000-65 100.5 38.1 36.3 1.1000-65 100.7 34.9 34.9 1.1000 5.00-65 100.7 34.9 1.1000 5.00-65 100.7 34.9 1.11 2.00-65 100.7 34.9 1.11 2.00-65 100.7 34.9 1.11 2.00-65 100.7 34.9 1.11 2.00-65 100.7 34.9 1.11 2.00-65 100.7 34.9 1.11 2.00-65 100.7 34.9

Appendix D

SURFACE WATER QUALITY

quality Coastal 1965. Methods Resour Method U. S. Analys report millia detem field were Turbi those repor Codir to ea

INTRODUCTION

Data presented in this appendix are measured values of selected quality characteristics of surface water samples collected in the Central Coastal Area during the period from October 1, 1964, through September 30, 1965.

Methods and Procedures

Laboratory alalyses were performed by the Department of Water Resources and the U. S. Geological Survey in accordance with "Standard Methods for the Examination of Water and Waste Water", 11th Edition, or with U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The methods yield comparable accuracy.

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Total dissolved solids reported were determined by gravimetric determination at 180°C. Values for temperature are those measured in the field at the time of sampling. Trace element (heavy metal) concentrations were determined both by "wet" analyses and by the spectrographic method. Turbidities determined in the field are reported in Jackson candle units and those determined in the laboratory in parts per million silica. Color is reported in color units.

Coding

The station number is an arbitrary number that has been assigned to each station. The locations of the stations are shown on Plate 3.

EXPLANATION OF FIGURES AND TABLES

Specifi

Figures

values

plotte

Sapli

listin analy: numbe locat Land basic <u>Analy</u>

> ate : At i dete meth stre on j

> > labi

the

Definitions of abbreviations used in this appendix and not defined on the tables are as follows:

ABS Al As	Alkyl benzene sulphonate Aluminum Arsenic
BHC BOD	Benzene hexachloride Biochemical oxygen demand in parts per million
C cfs Cu	Celsius (centigrade) Cubic feet per second Copper
DWR	Department of Water Resources
F Fe Fld	Fahrenheit Iron Field
Lab	Laboratory
Mn MPN/ml	Manganese Most probable number per milliliter
N.C.	Non-carbonate
Pb pH PO ₄ ppDDD ppDDE ppDDT ppm PST	Lead The negative logarithm of the effective hydrogen ion concentration Phosphates Para-para dichlorodiphenyldichloroethane Para-para dichlorophenyldichloroethene Para-para dichlorodiphenyltrichloroethane Parts per million Pacific Standard Time
Susp.	Suspended
USGS	U. S. Geological Survey
Zn	Zinc

Specific Conductance

ined

Data from two electrical conductivity recorders are presented in Figures D-1 and D-2. These data are machine prepared graphs. Daily mean values are plotted in Figure D-1 and single daily readings at 1300 hours are plotted in Figure D-2. Each figure or graph presents the data from a station. Sampling Station Data and Index

Table D-1, "Sampling Station Data and Index", is an alphabetic listing of stations from which surface water samples were collected. The analyses of these samples are reported in subsequent tables. The station number is an arbitrary number that has been assigned to each station. The location pertains to either the township, range, and section of the Public Land Survey or to latitude and longitude. The stations are classified into basic data, investigational, and operational types.

Analyses of Surface Water

Table D-2, "Analyses of Surface Water", includes physical characteristics of the water and results of mineral and bacterial analyses. The data are presented by region and by stream from north to south within a region. At the time the samples were collected for laboratory examination, field determinations were made for dissolved oxygen (DO) by the modified Winkler method, water temperature, and pH. Visual inspections were made of the streams and the physical conditions were noted. This information is kept on file with the Department.

Samples collected for bacterial examination were analyzed by the laboratory as quickly as possible. Results of bacterial determinations presented in this appendix should be considered as qualitative and quantitative indicators. Undue weight should not be given to the values for quantitative purposes.

Data from operational stations are shown separately at the end of the table. These data consist of analyses of South Bay Aqueduct water.

-121-

Summary of Coliform Analyses

Coliform data included in Table D-2 are made more usable by summarizing the results of the analyses of the 24 samples collected at each station during the year. Table D-3 is a summary of these analyses. the fil

on the

(d) bet

and get

comput

x ty.

the va

Delta

Nutri

analy

analy

Pesti

sedi

with

Analyses of Trace Elements in Surface Water

Spectrographic analyses were made to determine the concentration of 17 different elements in surface water samples. Most of these elements are present in very small amounts and are often called trace metals. The concentrations indicated in Table D-4 are in parts per billion instead of parts per million which is commonly used in reference to concentrations of mineral constituents. The symbols included with the constituent quantities are:

> Greater than the amount indicated
< Less than the amount indicated</p>
< Equal to or slightly less than the amount indicated.</p>

Radioassays of Surface Water

Table D-5, "Radioassays of Surface Water", presents the radioactivity of surface water samples collected at 23 monitoring stations. The samples were collected in May and September at the same time that samples were collected for standard mineral analyses shown on Table D-2. The methods and procedures of sample preparation and determination of radioactivity in water are described in "Standard Methods for the Examination of Water and Waste Water", 11th Edition. The samples were analyzed by the Department of Public Health. Results are expressed in micro-micro curies per liter or by the equivalent units of pico curies per liter (PC/1). These units are defined as 10^{-12} curies. The most probable error is reported along with the measured value. Results should be considered qualitative and undue emphasis should not be given to quantitative values.

-122-

Four values are reported for each sample: (a) alpha activity in the filtrate (dissolved material), (b) alpha activity in the solids retained on the filter (suspended material), (c) beta activity in the filtrate, and (d) beta activity in the solids. Sample counts are corrected for background and geometric efficiency. Standard statistical procedures are utilized to compute the 0.9 error. The final result is expressed (symbolically) as $x \pm y$. This means that in a series of determinations on the same sample, the value of x should fall between x - y and x + y ninety percent of the time. Salinity Observations at Bay and Delta Stations

Table D-6 describes the six stations for which salinity data are listed in Table D-7. Table D-6 includes maximum observed salinity at Bay and Delta stations. Table D-7 presents chloride concentrations in samples collected at six stations between Crockett and Collinsville.

Nutrients

S

S

Table D-8 presents analyses of nutrients in surface water. These analyses were made by the Department. The samples were kept on ice and were analyzed for the nitrogen series in the laboratory on the same day collected. Pesticides

Table D-9 presents analyses of pesticides in surface water and sediment. The samples were analyzed by the Department using a gas chromatograph with an electron capture detector.

-123-

FIGURE D-2

SPECIFIC CONDUCTANCE DAILY MEAN ALAMEDA CREEK NEAR NILES (STA 73) 1964-65 WATER YEAR

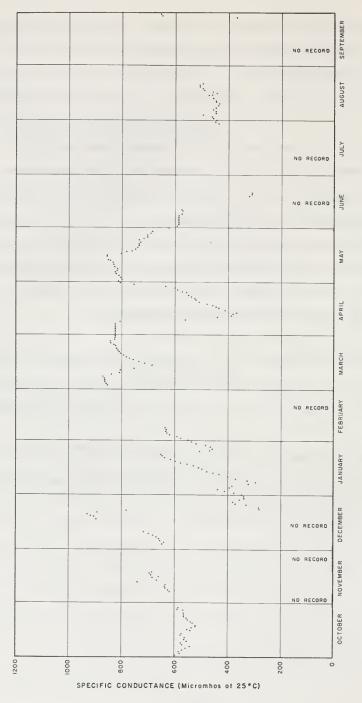


FIGURE D-I

1964-65 WATER YEAR

BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA 207)

SPECIFIC CONDUCTANCE DAILY READINGS AT 1300 HOURS

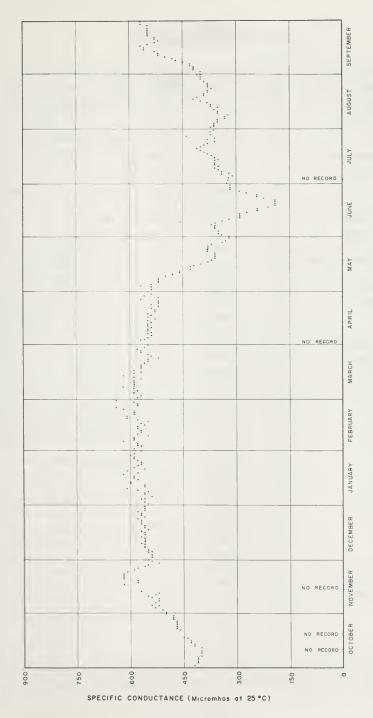


FIGURE D-2

WATER YEAR

0014000

-125-

TABLE D-I SAMPLING STATION DATA AND INDEX

Station	Station Number	Location ^a	Beginning of Record	Station ^C Type	Region	Analyses on page
ALAMEDA CANAL AT DEL VALLE CHECK	314	3S/2E-22	Aug. 1965	0	2	170
ALAMEDA CREEK NEAR NILES	73	4S/1W-15	Dec. 1951	В	2	145, 172, 173, 179, 183
ALAMEDA CREEK NEAR NILES	307	4 S/ 1W- 15	Oct. 1964	0	2	144
ALTAMONT CREEK BELOW ALTAMONT TURNOUT OF SOUTH BAY AQUEDUCT	201	2S/3E-31	June 1962	0	2	147
ARROYO DEL VALLE NEAR LIVERMORE	71	4S/2E-4	July 1958	8	2	146, 172, 173
ASH CREEK	285	12N/11W-36	July 1965	I	1	139
BEAN CREEK ABOVE LOCKHART GULCH CREEK	302	105/2W-13	Dec. 1964	I	3	150
BEAN CREEK ABOVE MACKENZIE CREEK	303	105/1W-7	Dec. 1964	I	3	150
BEAN CREEK ONE MILE EAST OF FELTON	204	105/2W-22	Aug. 1963	I	3	151
BEAN CREEK AT OLD GLENWOOD HIGHWAY	304	9S/1W-32	Dec. 1964	I	3	150
BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK	206	9S/2W-10	Aug. 1963	I	3	150
BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT	207	2S/3E-10	Apr. 1962	0	5	168, 181, 183
BETHANY FOREBAY NEAR BETHANY DAM	310	2S/3E-2	Dec. 1964	0	5	180
BETHANY FOREBAY AT MID-LENGTH	311	2S/3E-2	Nov. 1964	0	5	181
BIG AUSTIN CREEK	268	7N/11W-11	July 1965	I	1	133
BIG RIVER NEAR MOUTH	8c	17N/17W-24	Jan, 1959	В	1	130, 173
BIG SULPHUR CREEK ABOVE GEYSERS POWER PLANT	284	11N/8W-19	July 1965	I	1	138
BIG SULPHUR CREEK NEAR CLOVERDALE	282	11N/10W-4	July 1965	I	I	138
BLANCO DRAIN INTO SALINAS RIVER	246	14S/2E=16	Aug. 1964	I	3	158, 183
CARMEL RIVER AT ROBLES DEL RIO	83	17S/2E-2	Jan. 1952	В	3	167, 174
COLD CREEK	296	16N/11W-18	July 1965	I	1	141
COLLINSVILLE	236	38°04' Lat ^b 121°51' Long	1924	В	2	175
COYOTE CREEK NEAR MADRONE	82	9S/3E-9	Jan. 1952	В	2	148, 172, 173
CROCKETT	237	38°03' Lat ^b 122°13' Long	1946	В	2	175
CUMMISKY CREEK	286	12N/11W-9	July 1965	I	1	139
DRY CREEK NEAR GEYSERVILLE	277	10N/10W-22	July 1965	I	1	136
DRY CREEK NEAR YORKVILLE	279	12N/11W-15	July 1965	I	1	137
DYER CANAL AT DYER-ALTAMONT CHECK	312	2S/3E-20	Aug. 1965	0	2	169
FELIZ CREEK	288	13N/12W-23	July 1965	I	1	139
FORSYTHE CREEK	300	16N/12W-7	July 1965	I	1	143
GREEN VALLEY CREEK	270	7N/9W-6	July 1965	I	1	134
GUALALA RIVER, SOUTH FORK, NEAR ANNAPOLIS	9a	10N/14W-22	Jan. 1959	В	1	132, 173
INTERIM INTAKE CANAL AT AVIO GATE	308	2S/3E-1	Apr. 1965	0	5	168
INTERIM INTAKE CANAL AT INTERIM PUMPING PLANT	309	2S/3E-2	Feb. 1965	0	5	180
LAGUNA DE SANTA ROSA NEAR GRATON	274	7N/9W-14	July 1965	I	1	135
LITTLE SULPHUR CREEK	283	11N/9W-25	Sept. 1965	I	1	138
LIVERMORE VALLEY CANAL AT PATTERSON RESERVOIR	214	3S/3E-6	Aug. 1962	0	2	169, 182
LOCKHART GULCH CREEK ABOVE SEAN CREEK	301	10S/2W-13	Dec. 1964	I	3	150

Locations are referenced to Mt. Diablo Base and Meridian.
 Locations given in latitude and logitude because the sreas have not been surveyed for township, range, and section.
 B-Basic Data, 1-lovenityational, 0-Operational.

4. 1 b. 1 c. 1

TABLE D-I SAMPLING STATION DATA AND INDEX

Station	Station Number	Location ⁸	Beginning nf Record	Station ^C Type	Region	Analyses on page
LOS GATOS CREEK NEAR LOS GATOS	74	8S/1W-29	Dec. 1951	8	2	149, 173
MAACAMA CREEK	281	9N/8W-8	July 1965	I	1	138
MARK WEST CREEK AT TRENTON-HEALDSBURG ROAD	271	8N/9W-34	July 1965	I	1	134
MARK WEST CREEK NEAR FULTON	275	8N/8W-28	July 1965	I	1	136
MARTINEZ	239	38°02' Lat ^b 122°08' Long	1926	В	2	175
MCNAB CREEK	290	14N/12W-26	July 1965	I	1	140
MIDDLE POINT	255	38°03' Lat ^b 121°59' Long	Jan. 1964	В	2	175
MILL CREEK	276	9N/9W-33	July 1965	I	I	136
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	25S/11E-4	July 1958	В	3	165, 174
NAPA RIVER AT DUTTONS LANDING	72a	4N/4W-9	Sept. 1965	В	2	179, 183
NAPA RIVER NEAR ST. HELENA	72	8N/5W-33	Dec. 1951	8	2	144, 172, 173
NAVARRD RIVER NEAR NAVARRO	8ъ	15N/16W-7	Jan. 1959	В	1	131, 173
NOYO RIVER NEAR FORT BRAGG	10c	18N/17W-10	Jan. 1959	В	1	129, 173
PAJARO RIVER NEAR CHITTENDEN	77	12S/3E-12	Dec. 1951	в	3	153,172, 174, 179, 183
PATTERSON RESERVOIR	313	3S/2E-6	Aug. 1965	0	2	170
PIETA CREEK	287	12N/11W-2	July 1965	I	1	139
PITTSBURG	240	38°02' Lat ^b 121°53' Long	1945	В	2	175
PORT CHICAGO	241	38°04" Lat ^b 122°02' Long	1946	В	2	175
ROBINSON CREEK	291	14N/12W-4	July 1965	I	1	141
RUSSIAN RIVER, EAST FORK, ABDVE LAKE MENDDCINO	295	16N/12W-13	July 1965	I	1	141
RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE	10a	17N/11W-6	May 1951	В	1	142, 173
RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE	297	17N/11W-6	July 1965	1	1	142
RUSSIAN RIVER, EAST FORK, BELOW LAKE MENDOCINO	294	16N/12W-34	July 1965	I	1	141
RUSSIAN RIVER AT DUNCANS MILLS	267	7N/1IW-14	July 1965	I	1	133
RUSSIAN RIVER AT GUERNEVILLE	10	8N/10W-32	Apr. 1951	В	1	133,172, 173, 179, 183
RUSSIAN RIVER AT GUERNEVILLE	269	8N/10W-32	July 1965	I	1	133
RUSSIAN RIVER NEAR HEALDSBURG	9	9N/9W-22	Apr. 1951	В	1	137, 173
RUSSIAN RIVER NEAR HEALDSBURG	280	9N/9W-22	July 1965	I	1	137
RUSSIAN RIVER NEAR HOPLAND	8a	14N/12W~36	Apr. 1951	В	1	139, 173
RUSSIAN RIVER NEAR HOPLAND	289	14N/12W-36	July 1965	I	1	139
RUSSIAN RIVER ABOVE EAST FORK RUSSIAN RIVER	298	16N/12W-33	July 1965	I	1	143
SALINAS RIVER NEAR BRADLEY	43c	23S/10E-15	July 1958	В	3	163, 174
SALINAS RIVER AT PASO ROBLES	43a	26S/12E-28	Apr. 1951	В	3	166, 174
SALINAS RIVER NEAR SPRECKELS	43	15S/3E-18	Apr. 1951	В	3	162,172, 174, 179, 183
SALINAS RIVER, MILE 12.46	305	15S/3E-18	Oct. 1964	I	3	161
SALINAS RIVER, MILE 25.67	306	16S/4E-8	Jan. 1965	I	3	163
SALINAS RIVER, MILE 9.51	259	15S/2E-2	Aug, 1964	I	3	160

Locations are referenced to Mt. Diablo Base and Meridian.
 Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section.
 B-Basic Data, I-Lovestigational, 0-Operational.

l J Les os ege 171 13, 19, 11 14 147

139 150

150 31 50

ő

183

TABLE D-I SAMPLING STATION DATA AND INDEX

Station	Station Number	Location®	Beginning of Record	Station ^C Type	Region	Analyses on page
SALINAS RIVER, MILE 7.13	260	14S/2E-33	Aug. 1964	I	3	159
SALINAS RIVER, MILE 4.65	261	14S/2E-16	Aug. 1964	I	3	159
SALINAS RIVER, MILE 3.50	262	14S/2E-16	Aug. 1964	I	3	157, 183
SALINAS RIVER, MILE 1.70	263	14S/2E-7	Aug. 1964	I	3	156
SALINAS RIVER, MILE 0.00	264	14S/1E-1	Aug. 1964	I	3	156
SAN ANTONIO RIVER NEAR PLEYTO	43d	24S/9E-3	July 1958	В	3	164
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	15S/7E-28	July 1958	В	3	154, 174
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	10S/2W-27	Dec. 1951	В	3	151, 174, 179, 183
SAN LORENZO RIVER AT BOULDER CREEK	227	9S/2W-30	Aug. 1963	I	3	150
SAN LORENZO RIVER S1X MILES NORTH OF BOULDER CREEK	228	8S/3W-25	Aug. 1963	I	3	150
SANTA CLARA PERCOLATION FONDS	315	37°20' Lat ^b 121°51' Long	Aug. 1965	0	2	170
SANTA CRUZ PIER	120	11S/1W-19	July 1965	В	3	179, 183
SANTA ROSA CREEK AT MELITA	273	7N/7W-16	July 1965	I	1	135
SANTA ROSA CREEK AT WILLOWSIDE ROAD	272	7N/9W-24	July 1965	I	1	135
SOQUEL CREEK AT SOQUEL	76	11S/1W-10	Dec. 1951	В	3	151, 174
SULPHUR CREEK ABOVE VICHY SPRINGS	293	15N/12W-14	July 1965	I	1	141
SULPHUR CREEK BELOW VICHY SPRINGS	292	15N/12W-16	July 1965	I	1	141
UVAS CREEK NEAR MORGAN HILL	96	10S/3E-17	July 1952	В	3	155, 174
WARM SPRINGS CREEK	278	10N/11W-24	July 1965	I	1	136
YORK CREEK	299	16N/12W-33	July 1965	I	1	143
ZAYANTE CREEK AT ZAYANTE	234	105/2W-2	Aug. 1963	I	3	150

TABLE D-2 OF SURFACE WATER

ANALYSES

s. Locations are referenced to Mt. Diablo Base and Meridian.
 b. Locations given in latitude and longitude hecause the areas have not been surveyed for township, range, and section.
 c. B-Basic Data, I-lovestigational, 0-Operational.

	WATER
ABLE D-2	SURFACE
TAE	9F
	ANALYSES

	2															
	Anoly2sd by ⁸			USGS												
0	bid - Coliform 11 y MPN/mi			6.2 62	6.2 230.	23. 62.	62. 230.	130. 230.	6.2 62.	230.	2.3	13.	0.62	62. 130.		
Tur-	2			-	240	6	250	15	2	230]~		5	1	_	
	N CO3			0	ŝ	0	0	0	6	7	0	0	0	0		
				66	51	40	24	40	52	39	52	56	60	9 64		
Per	L L L L L L L L L L L L L L L L L L L			28	28	29	35	28	26	36	27	28	29	28		
Totel	abilos adide mgg ri										96			105		
	Other constituents									Ås = 0.00	ABS = 0.05 $PO_4 = 0.05$		Ae = 0.00	ABS = 0.0 $PO_{4} = 0.04$		
	Silica (SiO ₂)										20			16		
lion	Baran (B)			0.2	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0*0	_	
parts per million equivalents per million	Fluo- ride (F)	_	(c)													
aarts pe alents	NI - trate (NO ₃)	0, 1)	(SIA. 1						_		0.01			0.00		
equiv	Chlo- ride (CI)	CION (N	BRAGG	9.7	9.5	<u>5.2</u> 0.15	4.6	<u>5.8</u> 0.16	6.4 0.18	<u>5.5</u> 0.16	$\frac{6.6}{0.19}$	$\frac{6.7}{0.19}$	8.6	9.9 0.28		
ų s	Sul - fote (SO ₄)	NORTH COASTAL REGION (NO. 1)	NOYO RIVER NEAR FORT BRAGG (STA. 10c)								<u>6.0</u>		1.0	0.10		
stituent	Bicar- bonate (HCO ₃)	RTH COA	IVER NE	83 1.36	58 0.95	<u>50</u> 0.82	31 0.51	50 0.82	<u>52</u> 0.85	<u>39</u> 0.64	70	$\frac{74}{1.21}$	76	88 1.44		
Mineral constituents	Corbon- ate (CO ₃)	NO	NOYO R	0.00	0.00	0,00	0,00	0,00	0,00	0.00	0.00	0.00	1 0.03	0.00		
Min	Potos- sium (K)										<u>1.2</u> 0.03			<u>1.0</u> 0.03		
	Sodium (No)			$\frac{12}{0.52}$	<u>9.0</u> 0.39	$\frac{7.4}{0.32}$	<u>6.0</u> 0.26	$\frac{7.1}{0.31}$	8.3	10.44	9.0 0.39	9.8 0.43	$\frac{11}{0.48}$	12 0.52		
	Magne- sium (Mg)			1.32 ^e	1.02	0.80	0.48 ^e	0.80 ^e	1.04 ^e	0.78 ^e	<u>4.1</u> 0.34	1.12 ^e	1.20	5.8		
	Calcium (Ca)		-								14 0,70			16 0.80		
	E ala			7.3	7.2	7.8	7.6	7.7	$\frac{7.2}{6.9}$	6.8 6.7	7.2 8.2	<u>7.4</u> 8.2	7.4	7.7		
Concilio	of 25°C)			177	146	113	75	112	146	123	144	154	166	181		
	gen 9/oSot			78	30	94	93	103	96	112	98	67	117	95		
	Dissolved oxygen ppm 9/oSot			8.1	10.1	10.5	11.0	11.4	11.0	12.1	10.6	7.3	10.6	10.8		
	T and T o F			57	67	51	47	52	49	54	54	53	69	50		
	Dischorge Tsmp in cfs in OF			5.7	88	584	 ,540	250	74	656	57	32	13	3.3		
	Dote and time sampled P.S.T.			10-14-64 0730	11-11-64 0645	12-3-64 1400	-	2-5-65 0745	3-10-65 0730	4-16-65 0750	5-14-65 0715	6-4-65 0800	7-15-65 1800	9-17-65 0815		

a Field determination.

b Laboratory analysis.
c Analysed by California Department of Public Health, Division of Laboratories.
c Analysed by California Department of Water Resources Division (USGS) or California Department of Water Resources (WWR) as indicated.
d Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (WWR) as indicated.
d Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (WWR) as indicated.
e Sum of calcium and magnetium in epm.

	pez	T			S													
	by				USGS													
	Hardness bid - Collform ^C Analyzed es CoCO ₃ 117 MPN/mi by d Tatal N C. <u>a</u>															_		
Tue~		-			-	140	25	240	L	2		1	10	2	-			
	dness CoCO ₃	00 mod			0	5	0	0	0	0		0	0	0	0			
		000			87	65	50	30	57	75		72	72	86	87			
-	1 - E	_			25	24	25	33	23	21		22	23	23	24			
Total	solved solids in pom											119			137			
	Other constituents											As = 0.00 ABS = 0.0 $PO_4 = 0.10$		00 0	ABS = 0.00 ABS = 0.0 $PO_4 = 0.05$			
	Silica (SiO ₂)											23			16			
lion	Boron (8)				0.4	0.2	0.1	0.0	0.1	0.2		0.2	0.2	0.2	0.3			
per million	Fluo-	5																_
	Ni - trote	-+	(1	8c)								0.9			0.00			
ports per aquivolants	Chio-	+	NO (NO.	(STA.	$\frac{7.9}{0.22}$	$\frac{7 \cdot 2}{0 \cdot 20}$	<u>5.4</u> 0.15	<u>4.5</u> 0.13	<u>5.6</u> 0.16	$\frac{6.4}{0.18}$		6.3 0.18	$\frac{13}{0,37}$	$\frac{7*8}{0*22}$	$\frac{8,3}{0,23}$		-	
Ē	Sul - fate	1Pher	AL REGIO	AR MOUTH								$\frac{8.0}{0.17}$			6.0 0.12			
tituents	Bicar - bonate	IR DOL	NORTH COASTAL REGION (NO.	BIG RIVER NEAR	<u>124</u> 2.03	73	63 1.03	39_0.64	$\frac{74}{1.21}$	$\frac{92}{1.51}$		93 1.52	93 1.52	$\frac{108}{1.77}$	$\frac{122}{2*00}$			
Mineral constituents		- T	NORT	BIG R	0,00	0,00	0.00	00.00	0,00	0.00		$\frac{1}{0.03}$	$\frac{1}{0.03}$	3 0.10	0,00			
Mini	Potas- Carban- sium ote	2										<u>1.5</u> 0.04			$\frac{1.4}{0.04}$			
	Sodium (Na)				<u>13</u> 0.57	$\frac{9 \cdot 2}{0 \cdot 40}$	$\frac{7.8}{0.34}$	<u>6,6</u> 0.29	8.1 0.35	<u>9,5</u> 0.41		$\frac{9.7}{0.42}$	<u>10.</u> 0.44	12 0.52	<u>13</u> 0.57			
	Magne- stum (Mo)	/6m)			1,74 ^a	1.30	1.00 ^c	0.60	1.14	1.50°	Lost	0.49	1.440	1.720	<u>8.4</u> 0.69			
	Calcium (Ca)										Samp le	19			21			
-			_	-	7.8	7.4	7.9	$\frac{7.2}{7.6}$	7.7	7.2 8.0	7.2	7.4	7.0 8.4	7.8	7.7			
Scarific	(micramhos PH				225	167	135	88	150	182		184	187	206	253			
	gan (1020/			77	06	96	66	112	96	98	102	65	117	82			
	Diss(E 00			8.0	10,1	10.5	11.5	12.1	10.8	10.7	10.0	6.4	10.2	9.2			
	Temp in oF				56	50	52	48	53	50	52	61	60	73	51			
	Dischorgs Temp in cfs in OF				4.2	150 est.	500 est.	600 est.	150 est.	66	600 eat.	125 eat.	100 est.	15 cet.	4 eat.			
	Date and time sompled P < T	1.0.1.			10-14-64 0840	11-11-64 0800	12=3=64 1500	1-7-65 1005	2-4-65 1215	3-10-65 0840	4-16-65 0900	5-13-65 1405	6-4-65 0915	7-15-65 1700	9~17-65 0930			

a Field determination.

b Laboratory analysis.

c Amalyzed by California Department of Public Health, Olvision of Laborciorice. d Mineral amalyses made by Unitad States Geological Survey, Watar Resources Division (USGS) or California Department of Mater Resources (DMR) as indicated.

ANALYTA S OF SURFACE WATTR

Sum of calcium and magnesium in epm. 0

<u> </u>	pez				0											 	
	Anolyzed by d	5			USGS											 	
	Coliform MPN/ml	ماه			23. 230.	130. 620.	62. 230.	23 . 62.	62. 620.	23.	23.	2.3 23.	6.2 23.	2.3 620.	0,62		
		ماه			۳ ۱	240	25	200	100	3	009	m	2	5		 	
	Hordness os CoCO.	D E O O			0	00	0	0		0	-1	0	0	0		 _	
	H O	Tatol			113	70	70	39	76	103	48	66	109	112		 	
-	tent p	9 E			20	22	23	28	21	19	24	3 19	19	20		 	
	Bolved	0.10°									_	148				 	
		Other constituents									As = 0.00	ABS = 0.0 $PO_4 = 0.10$					
		(SiO ₂)										17					
-		Boron (B)			0.2	0.1	0.1	0.2	0,1	0.1	0.1	0.2	0.2	0.1		 	
milior		ride (F)															
ports per million		11016 (NO ₃)		A. 8b)								$\frac{1,1}{0,02}$					
bd		(CI)	ON (NO.	RRO (ST	8.8 0.25	6.9	6.4 0.18	5.2	$\frac{6.4}{0.18}$	$\frac{7.4}{0.21}$	4.3	$\frac{7.1}{0.20}$	$\frac{7,3}{0,21}$	9.0 0.25			
Ē		tota (SO ₄)	AL REGI	AR NAVA								$\frac{11}{0,23}$			_		
1. tuents		bonats (HCO ₃)	NORTH COASTAL REGION (NO. 1)	IVER NE	148 2.43	76 1.25	86 1,41	48 0.79	92 1.51	128 2.10	57 0,93	124 2.03	<u>130</u> 2.13	$\frac{132}{2.16}$			
Minaral constituents		(CO ₃) (NORT	NAVARRO RIVER NEAR NAVARRO (STA. 8b)	0,00	0.00	0,00	0,00	0*00	0 0,00	0,00	$\frac{1}{0,03}$	4 0.13	6 0.20			
Miner		(K) (CO ₃) (-	7N								1.5 0.04				 	
		Sodium (Na)			<u>13</u> 0, 57	9.0 0.39	9.4 0.41	7.1	9.2 0.40	$\frac{11}{0,48}$	7.0 0.30	$\frac{11}{0,48}$	$\frac{12}{0,52}$	$\frac{13}{0,57}$			
		-eudowe-			2.26 ^e	1.40 ^e	<u>1,40</u> ^e	0,78 ^e	1.52 ^e	2,06 ^e	0.96 ^e	8.9 0.73	2.18	2.24 ^e	Sample Lost		
		Colcium (Co)										25 1.25			Samp		
	I	مره			7.5	7.4 7.5	7.4 8.2	7.5	7.6	$\frac{7.2}{7.9}$	<u>6,8</u> 6,8	$\frac{7,5}{8,3}$	7.6	7.8	7.4		
	Specific	at 25°C)			274	181	183	107	188	242	119	239	2 52	266			
	pea				83	06	96	95	95	93	109	100	62	122	108		
	-	ppm ppm			8,3	10,0	10.8	10,9	10.6	10.3	11.9	10.2	6.2	10.3	10.6		
	d Le	E E			60	52	52	49	51	52	53	59	61	76	62		
	Discharge Temp	in cfs			7.1	906		584	455	82		160	74	32	14		
		sompled P.S.T.			10-14-64	11-11-64 0945	12-3-64 1550	1-7-65 1115	2-5-65 0900	3-10-65 1040	4-16-65 1020	5-14-65 0830	6-4-65 1030	7-15-65 1600	9-17-65 1020		

I will a flower and Catholic >

PERTAINALL MANALYSING CONTRACT VIA UNALLASS DATA DEPENDENCE VIA PERTAINALYSING VIA UNALLASS AND VIA VIA VIA

TABLE D-2 ANALYSES OF SURFACE WATER

Field determination. 10

Laboratory anelysis. 2

Analyzed by California Department of Fublic Health, Division of Laboratories.

Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Mater Resources (DMR) as indicated. Sum of calitum and magnetium in epm.

÷

	P			50											 	7
	Anolyzed by			USCS										N		
	Coliform ^c MPN/mi			23. 130.	23. 130.	23. 62.	23.	62. 130.	2.3 23.	23.	0.62	23. 62.	2.3 23.	0.62 62.		
ł	A ala			[55	17	750	280	2	160	-	٣	-	1-		
	Hordnass as CoCOs Totol N C ppm ppm			7	7 	2 0	44 1	68	93 1	55 2	0 96	3	8	4	 	
				114	99	82						163	108	114		_
				20	20	21	25	19	18	21	18	19	21	21	 	4
Toto	solive solive pog solids	_			_						138			159		
	Other constituents										$A_{B} = 0.00$ $A_{BS} = 0.00$ $PO_4 = 0.10$		00.00	$PO_4 = 0.07$		
	Silico (SiO ₂)		-								<u>17</u>			15		
lion	Boron (B)		~	0.1	0.0	0.1	0*0	0.1	0.0	0*0	0.1	0.1	0.0	0.0		
per million	Fluo- ride (F)		TA, 9a													
	NI- trote (NO ₃)	-	S) SITO								$\frac{1.1}{0.02}$			0.4		
ports pe squivalents	Chio- ride (Ct)	N (NO.	NEAR ANNAPOLIS (STA. 98)	<u>8.7</u> 0.25	6.8 0.19	6.2 0.17	<u>5.4</u> 0.15	<u>6.7</u> 0.19	$\frac{6.4}{0.18}$	<u>5.2</u> 0.15	$\frac{6,7}{0,19}$	6,2 0,17	7.6 0.21	8.7 0.25		
Ē	Sul - fota (SO ₄)	L REGIO	K, NEAF								$\frac{12}{0.25}$			<u>10</u> 0,21		
htuants	Bicor - bonats (HCO ₃)	NORTH COASTAL REGION (NO. 1)	SOUTH FORK,	<u>146</u> 2.39	$\frac{73}{1,20}$	<u>98</u> 1.61	<u>53</u> 0.87	$\frac{77}{1.26}$	<u>117</u> 1.84	<u>65</u> 1.07	115	<u>130</u> 2.13	<u>130</u> 2.13	148 2.43	 	-
Mineral constituents		NORTH		$\frac{2}{0.07}$	0.00	2 0.07	0.00	0.00	0.00	0.00	$\frac{2}{0.07}$	0.00	2 0.07	$\frac{1}{0.03}$	 	-
Miner	Potos- Corbon- sum (K) (CO ₃)	-	GUALALA RIVER,								$\frac{1,3}{0,03}$			<u>1,2</u> 0.03	 	
	Sodium (No)	-	GU	<u>13</u> 0.57	7.6 0.33	9.8 0.43	6.7 0.29	7 <u>.2</u> 0.31	<u>9.5</u> 0.41	6 <u>.9</u> 0.30	<u>10</u> 0.44	11 0.48	13 0.57	<u>14</u> 0.61		
	Mogns- Sc sum (Mg)			2.28	1,28 ^e	1.64	0.88	1.36	1.86	1.10°	8.8 0.72	2.06	2.16	1.03	 	
	Colcium M										<u>24</u> 1,20			<u>25</u> 1.25	 	-
	H elt			8.4 8.3	7.9	8.3	7.8	7.7	7.4 8.0	7.4	7.5 8.4	8.2 8.2	7.6 8.5	<u>7.5</u> 8.3	 	-
out to	conductance (micromhos of 25°C)			270	164	202	115	165	217	132	227	246	251	275		-
	ved Cr			138	92	93	96	66	95	98	100	88	101	93	 	
	Discolved oxygan ppm %Sof			12.5	6°6	10.4	11.0	10.7	10.4	10.2	10.2 1	8.4	0.6	9.2		
	Temp in oF			3.4 69	54	51	67	54	53	57	59	64	71	4 61		
	Discharge Temp in cfs in of			3.4	1210	340			135	2510	113	59	15	- S- C		
	Dote ond time sompled P.S.T			10-14-64 1310	11-11-64 1145	12-3-64 1700	1-7-65 1330	2-5-65 1105	3-10-65 1250	4-16-65 1300	5+14-65 1015	6-4-65 1300	7-15-65 1400	9-17-65 1300		

a Field determination.

b Laboratory analysis.

e Analyzed by California Department of Public Health, Division of Laboratorios. d Mineral analyaus made by United States Guological Survey, Water Resources Division (USCS) or California Department of Water Resources (DMR) as Indicated.

Sum of colcium and magnesium in spm.

ANALYSES OF SURFACE WATLE

0

	WATER
ABLE D-2	SURFACE
IAB	٩
	ANALYSES

Crange and Lord Long and

						Specific					Mir	teral cor	Mineral constituents	Ē	parts ps equivalents		per million	e o			Totei					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	pled S.T	Dischor in cfi	s in oF		asolved axygen m %Sot	(micromho at 25°	10 01 H	Colcium (Ca)	Mogns- sium (Mg)	Sodium (Na)	Potas- eium (K)		Bicar - bonats (HCO ₃)	1				Baron Sili (B) (Sid			solved solved in ppm		CoCO3	말 ~ 이스		Anolyzad
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$												NOR	TH COAST	AL REGI	ON (NO.	1										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											RI	USSIAN R	IVER AT	DUNCANS	MILLS (STA. 26	(2)	_								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.65		72			343	8.5			<u>12</u> 0.52	$\frac{1.9}{0.05}$	6 0,20	$\frac{169}{2*77}$	$\frac{17}{0.35}$			0.00	0.4		= 0.0 = 0.35 = 1.4						DHR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9-65		67	10		290	8.5		2.74 ^e			6 0.20	$\frac{150}{2*46}$			$\frac{1.1}{0.02}$				= 0,61		137				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												8.10	G AUSTIN	CREEK	(STA.	(8)										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-65	1/2 eat.		00		2.78	7.7			8.2 0.36	$\frac{1.1}{0.03}$	0.00	$\frac{167}{2.74}$	7.2 0.15			0.00	0.0	ы	= 0.07 = 0.07						DWR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-65	1/2 eat.		00		280	8.5		2.84			6 0.20	$\frac{157}{2.57}$			0.4				- 0.07		142				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											-	AUSSIAN	RIVER AT	GUERNE	VILLE (S	TA. 269	2									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	65	212		10.		330	8.1																	30	<u>14 0 2</u>	ield etermi- stions
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 65	219		6		270	8.1																	28		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_				_					RUSSLAN	RIVER A	T GUERN) TTIIAS	STA. 10	2									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-64	177		10.	Q	292	8.4		2.54	11 0.48		4 0.13	154		$\frac{7.4}{0.21}$			0.4						-	2.3 23.	USGS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-64	5,660	53	00		170	7.4		1,36 ^e	$\frac{7.2}{0.31}$		0.00	69 1.13		6.4 0.18			0.2						280	7,000.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-64	2,050	56	.6	9	220	7.6		1.800	8.6		0.00	$\frac{105}{1.72}$		<u>5.2</u> 0.15			0.3			1				230.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	65	39,100	50	10.		121	7.5		1,00 ^e	<u>5.9</u> 0.26		0.00	<u>58</u> 0.95		$\frac{3.4}{0.10}$			0.2			5				21. 230.	
	65	4,030		6	6	217	7.7		1.86 ^e	<u>8.1</u> 0.35		0.00	$\frac{106}{1.74}$		<u>5.9</u> 0.17			0.2						20	620. 2,400.	
																		-						_		

Picld determination.

6 م,

U

Laboratory amalysis. Amalyzed by California Oopartment of Public Health, Division of Laborstories. Mareral amalyzes made by United States Goological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of calcium and magnesium in epo.

-9 0

	Andlyzed by				USGS							DWR			DWR	Field determi- natione	Field determi- nations	
	bid - Coliform				23. 230.	62. 230.	23. 23.	2.3 23.	230. 230.	5. 13.								
Tur-	D D D D D D D D D D				15	650	20	15	17	10			80		30			
	N C O 3				Ŷ	Ś	4	5	~	1		0	П		0			
					133	57	122	130	146	127		105	142		215			
9	t cent	+-			14	17	14	14	15	15		23			42			
Tota	solids norids	-					150			160		156			417			
	Other constituents						ABS = 0.0 $PO_4 = 0.15$		00 00 = 0	$PO_4 = 0.52$		$F_{e}^{L_{d}} = 1.5$ F_{a} = 1.5 Color = 20	Po4 = 1.3	ARS = 1.2	$Fe^4 = 1.6$ $Fe^4 = 1.6$ Color = 25			
	Silica (SiO ₂)	+-					<u>15</u>			<u>51</u>								
lion	Borbn (B)				0.3	0.1	0.3	0.4	0.3	0.3		0.1		271)	0.6			
er mil	Fluo- ride (F)	1		()								0.00		TA. 27	0.03			
ports per million equivolents per million	Ni- trate (NO ₅)		. 1	10) (Co			3.5			$\frac{2.0}{0.03}$	270)	$\frac{0.7}{0.01}$	$\frac{1.5}{0.02}$	ROAD (S	$\frac{12}{0.19}$			
equivo	Chia- ride (CI)	T	ION (NO.	E (STA.	7.9 0.22	2.8 0.08	<u>5.9</u> 0.17	$\frac{6.0}{0.17}$	$\frac{7.6}{0.21}$	<u>6.6</u> 0.19		<u>15</u> 0.42	<u>14</u> 0.39	LDSBURG	6 <u>3</u> 1.78			
Ē	Sul - fote (SO ₄)		AL REG	NEVILL			14 0.29			<u>13</u> 0.27	CREEK	12 0.25		ON-HEA	<u>30</u> 0,62			
trituents	Bicar- bonote (HCO ₅)	+	NORTH COASTAL REGION (NO. 1)	AT GUER	<u>155</u> 2.54	$\frac{64}{1.05}$	<u>136</u> 2.23	$\frac{144}{2.36}$	$\frac{160}{2.62}$	<u>154</u> 2.52	GREEN VALLEY CREEK (STA.	<u>131</u> 2.15	<u>162</u> 2.66	AT TRENTON-HEALDSBURG ROAD (STA.	<u>294</u> 4.82			
Minaral constituents in	Corbon- 01e (CO _S)		NOR	RUSSIAN RIVER AT GUERNEVILLE (STA. 10) (Cont.)	0,00	0.00	4 0.13	4 0.13	$\frac{6}{0.20}$	0.00	GREE	0.00	<u>5</u> 0.17	CREEK	0.00			
Mine	Potos- sum (K)	Ť		RUSSIA			$\frac{1.1}{0.03}$			$\frac{1.2}{0.03}$		$\frac{2.9}{0.07}$		MARK WEST	$\frac{8.4}{0.21}$			
	Sodium (No)	T			10	<u>5.2</u> 0.23	9.4	9.6 0.42	<u>12</u> 0.52	10 0.44		<u>15</u> 0.65		4	3.26			
	Mogne- sum (Mg)	t			2,66	<u>1,14</u> e	$\frac{14}{1.14}$	2.60 ^e	2.92 ^e	$\frac{11}{0,94}$		$\frac{13}{1.10}$	2.84 ^e		$\frac{27}{2.26}$			
	Colcium (Co)	T					26 1.30			32 1.60		20 1.00			$\frac{41}{2.04}$			
⊢	I @].				7.4 8.2	7.1	8.0	7.8 8.5	8.2 8.5	7.9		<u>6.9</u> 8.1	7.3		7.7 8.3		7.6	
nacific	(micromhos of 25°C)				290	129	269	279	314	270		290	355		740	600	062	
	ed co Sot o				86	97	112	75	129	118		97	29		67	66	45	
	Dissolved oxygen ppm %Sot		-		9.2	10.2	10.2	7.1	11.0	10.8		4.5	2.8		4.4	5.5	4.1	
		1	_			56 10	69	65	75 1	68 10		61	79		20	78	68	
	Discharge Temp in cfs in oF				816	14,,500	880	417	198	275		<2 est.	Ponded		3 eet.			
	Dats and time sompled P.S.T				3-10-65 1450	4-16-65 1530	5-12-65 1210	6-4-65 1520	7-14-65 1030	9-15-65 0830		7-6-65 1040	9-29~65 1150		7-6-65 1020	7-6-65 1600	7-9-65 0415	

a Field determination.

Leborstory analysis. e,

Analyzed by California Department of Public Health, Division of Laboratories.
 Mineral analyzes made by United States Geological Survey, Mater Resources Division (USGS) or California Department of Mater Resources (DMR) as Indicated.
 Sum of calcium and magnesium in cpm.

TABLE D-2 ANALYSES OF SUMFACE WATER

	Anolyzed by d		Field	determi-	DWR		DWR	Field determi- nations	Field determi- netions	DWR		NMC			DWR	determi- netions		
0	bid - Coliform		E. 1	0 6				4.96	6.92						6	4 10 12		_
Tur -	bid- ity				170		110			60		2	9		60			
	N COS				16		0			23		0	0		0			
	Totol				216		215			212		198	156		78			
-	10 H E						5 42					4 16			0 33			
Tota	solved solved in ppm						465					264			150			
	Other constituents				PO ₄ = 26 Fe ⁴ = 5.6	ABS = 1.8		C0 = 10100		$P_{e_{4}}^{0} = 30$ $F_{e}^{4} = 1.1$	PO ₁ = 0.20	ы	PO_4 = 0.30	0 0 - 989	$P_{0} = 0.0$ $P_{0} = 0.5$ $F_{0} = 4.1$ $P_{0} = 4.1$			
	Silico (SiO ₂)		~ _															
lion	Boron (B)		(Cont.				0.5			0.6		0.3			0.1			
per mi	Fluo- rids (F)		(112			EA. 272					273)	0.01		A. 274)	$\frac{0.2}{0.01}$			
ports per million equivalents per million	NI- trote (NO ₃)		D (STA.		56 0.90	OAD (S'	$\frac{2.9}{0.05}$			$\frac{64}{1.03}$	(STA.	0.00	0.00	ON (ST.	0.10			
equivo	Chio- ride (CI)	(NO. 1	RG ROA		<u>104</u> 2.93	ISIDE R	$\frac{71}{2.00}$			<u>105</u> 2.96	ELITA	7.8 0.22	$\frac{11}{0.31}$	AR GRAT	<u>11</u> 0.31			
۱ ت	Sut - fote (SO4)	REGION	EALDSBL			NOTTIM	28 0.58				EK AT N	<u>11</u> 0.23		OSA NE/	<u>4.3</u> 0.09			_
tuents	Bicar- bonate (HCO ₃) (ASTAL	ENTON-H	_	244 4.00	CREEK AT WILLOWSIDE ROAD (STA. 272)	<u>328</u> 5.38			<u>230</u> 3.77	. R .	3.69	<u>207</u> 3.39	SANTA R	<u>112</u> 1.84			
Mineraí constituents in	Corbon - B: 010 b((CO ₃) (H	NORTH COASTAL REGION (NO. 1)	CREEK AT TRENTON-HEALDSBURG ROAD (STA. 271) (Cont.)		0.00	SANTA ROSA CR	0.00			0.00	- 1 -	0.50	0.40	LAGUNA DE SANTA ROSA NEAR GRATON (STA. 274)	0.00			
Minera	Polos- Cor sum (K) (C	+	ST CREE			SANTA	<u>9.5</u> 0.24					0.07		TAG	<u>5.4</u> 0.14			
	Sodium Po (No)	+	MARK WEST				3.35					0.74 0			0.83			
	Mogne- Soc sum (N)				4.32 ⁶		32 2.65 3			4.24		26 2.11 0	3.12		0.06			
	Calcium Mogne. (Co) sium				12		33 1.65 2			4		<u>37</u> 1.85 2	1m		<u>30</u> 1.50 0			
			0	0.	8.9 8.3		7.1	7.5	7.5	8.2		8.6	7.9 8.6		7.5			
sifie	conductance pH (micramhos pH ot 25°C)			960	910 ^a		852 3	850	1,130	1,000 ^a		439 8	400a		237 7	225		_
Spec	condu of 2																	_
	Oissolved osygen ppm 0/oSot			8 78	8 166		0.88	4 26	2 22	8 65		7 100	.8		6 48	7 145	_	-
				7.8	14.8		9 8.0	2.4	2 2.2	5.8		9.7	00		4.6	2 12.7		
	Discnorge Temp in cfs in ^o F			60	70		cet. 69	est. 70	st. 62	est. 70		/2 63	. 65		ed 64	ed 72		
							4 66	- 5 e8	10 est.	8 6 6		1 1/2 eet.	1 1/2 est.		Ponded	Ponded		
	0ote ond time sompled P.S.T.		20 20 25	9-30-03 0330	9-30-65 1150		7-6-65 0925	7-9-65 0335	9=30=65 0245	9-30-65 1120		7-9-65 0935	9-30-65 1015		7-6-65 0950	7-6-65 1625		

a Pield determination.

Laboretory analysis. ...

υ

Analyzed by California Department of Public Health, Division of Laboratorica. Hineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DWR) se indicated. Sum of calcium and magnesium in epm. P

a

TABLE D-2 ANALYSES OF SURFACE WATER

	Anolyzed by d		Field	determi-	Field determi- nations		DWR			DAR		DWR			DWR		
	bid - Coilform ^c Anolyzad ¹¹ y MPN/ml by ^d ⁸ ⁹				H O H												
- Tur							<10	$\widetilde{\mathbf{v}}$		80		45	0		∇	\heartsuit	
	Hordness a oe CoCO3 Totol N.C.						0	0		0		0	e.		0	0	
	Toto Dom						143	160		81		123	125		104	120	
	to point						19			21		17			34		
Totol	solids in porids				_		182			112		161			164		
	Other constituents						Fe ⁴ = 0.12 Fe ⁴ = 0.12 Color = 5	PO_4 = 0.15		$Fe^{4} = 0.10$ $Fe^{4} = 0.02$ $Color = 0$		$Fe^4 = 1.6$ $Fe^3 = 1.6$ Color = 0	PO ₄ = 0.07 Fe ⁴ = 0.45	0 0 2	$Fe^4 = 0.08$ Color = 0	PO_4 = 0.15	
	SiO ₂)																
uo	Boron Silica (B) (SiO ₂)						0.3			0.0		0.3			1.5		
per million	Fluo- ride (F)	t	(Cont.)				0.00			0.00		0.00			0.01		
16	Ni- Trote (NO ₃)	2	274) (-		. 275)	<u>1,3</u> 0,02	<u>1.1</u> 0.02		<u>1.0</u> 0.02	(772	$\frac{1.4}{0.02}$	0.5	~	0.01	0.5	
ports p equivalents	Chio- rids (CI)	NORTH COASTAL REGION (NO. 1)	LAGUNA DE SANTA ROSA NEAR GRATON (STA. 274) (Cont.)			MARK WEST CREEK NEAR FULTON (STA. 275)	0.37	<u>16</u> 0.45	276)	0.19	DRY CREEK NEAR GEYSERVILLE (STA. 277)	0.19	<u>5.0</u> 0.14	WARM SPRINGS CREEK (STA. 278)	$\frac{7.4}{0.21}$	8.6 0.24	
 	Sul - 6 fote (SO ₄)	REG10	GRATO!	_		R FULT	<u>9.2</u> 0.19		(STA.	8.6 0.18	ERVILL	<u>16</u> 0.33		EEK (S	<u>13</u> 0.27		
ients in		OASTAL	A NEAR	_		EK NEA		$\frac{193}{3.16}$	MILL CREEK (STA. 276)	$\frac{100}{1.64}$ $\frac{8}{0}$	R GEYSI	143 2.34 0	<u>141</u> 2.31	NGS CR	142 2.33 0	246 4.03	
onstifu	- Bicar- bonate (HCO ₃)	ORTH C	TA ROS	_		ST CRE	0 <u>3.03</u>		MILL		EK NEA			M SPRI			
Minsrol constituents	Carbon ote (CO ₃)	N	DE SAN			IARK WE	0.00	<u>12</u> 0.40		0,00	RY CRE	5 0.17	4 0.13	WAR	10 0.33	20	
ž	Potas- Carbon- sium ote (K) (CO ₃)		LAGUNA			-	$\frac{3.9}{0.10}$			$\frac{1.1}{0.03}$		$\frac{1.2}{0.03}$			$\frac{1.8}{0.05}$		
	Sodium (No)						16			9.8		$\frac{12}{0.52}$			25 1.09		
	nogne- sum sum (Mg)						$\frac{16}{1.31}$	3.20		<u>9.4</u> 0.77		1.06	2.50		<u>11</u> 0.88	2.40 ^d	
	Calcium Mogne- (Ca) sium (Mg)						$\frac{31}{1.55}$			$\frac{17}{0.85}$		$\frac{28}{1.40}$			$\frac{24}{1.20}$		
				7.5	7.1		7.3 8.3	7.5 8.6		7.5 8.3		<u>8.0</u> 8.5	7.5 8.4		<u>8.8</u> 8.7	<u>8.0</u> 8.6	
and in	(micromhos at 25°C)			330	220		331	400 ^a		190		272	280		281	490 ^a	
0	o Sot			55	38		63	74		112		133	91	_	145	103	
	Dissolved oxygen ppm %Sot			5.4	3.9		6.0	7.1		9.8		11.1	0.6		11.4	6.9	
				62	57		65	64		72		77 1	61		83 1	64	
	Dischorge Temp in cfe in ^o F			<1/4 est.	Ponded		3 est.	l est.		2 est.		12	1.2		4 est.	2 est.	
	Dote and time sompled P.S.T.			7-9-65 0355	9-30-65 0305		7+7-65 0710	9-30-65 0940		7-6-65 1350		7-6-65 1425	9-29-65 0900		7-6-65 1500	9-29-65 0830	

a Field determination.

b Laboratory analysis.

c Analyzed by California Department of Fublic Health, Division of Laboratories.

d Mineral analyses made by United States Geological Survey, Mater Resourcea Division (DSCS) or California Department of Mater Resources (DMR) as indicated. e Sum of calcium and magnesium in epm.

ANALYSES OF SURFACE WATER

٢

	Anolyzed by d			rieid determi- nstions	DWR		rield determi- nations			USGS							
	bid - Colitorm ¹¹ MPN/mi			4 0 1			400			13. 23.	2,100. 7,000.	230. 620.	620. 1,300.	23.	13. 23.	62. 62.	23. 23.
Tur-	- piq - ai.o			\$	2		6	19		-	6000	50	1500	300	20	80	30
	Hordness as CoCO ₃ Totol N.C ppm ppm				0					0	6	5	-	4	9	4	4
	Totol PPm				114					117	64	77	60.2	84	130	101	116
Per	Pare Pare									15	16	16	17	14	12	14	12
Totoi	solios solios in pos																153
	Othar constituents				P04 = 0.05												ABS = 0.1 $PO_4 = 0.05$
	(Silvea (SiO ₂)						-	-	-								14
Ion	Boron S (B) ((_	0.5	0.2	0.2	0.2	0.2	0.4	0.1	0.3
er mil.	Flua- ride (F)		-			()			~								
ports per million equivolents per million	Ni- trafe (NO ₃)	3	(6/7 .		$\frac{1.1}{0.02}$	RUSSIAN RIVER NEAR HEALDSBURG (STA. 280)			RUSSIAN RIVER NEAR HEALDSBURG (STA. 9)								2.4
equivo	Chio- ride (CI)	NORTH COASTAL REGION (NO. 1)	LE (STA		7.0 0.20	SBURG (DSBURG	$\frac{4.9}{0.14}$	$\frac{4.5}{0.13}$	$\frac{3.5}{0.10}$	$\frac{1.9}{0.05}$	<u>3.0</u> 0.08	<u>5.2</u> 0.15	<u>3.9</u> 0.11	$\frac{4.2}{0.12}$
č	Sul - tote (SO ₄)	I, REGI	ORKVIL			HEALD			R HEAL								$\frac{14}{0.29}$
constituents	bonate HCO ₃)	I COAST/	K NEAR Y		<u>131</u> 2.15	VER NEAH			, LVER NEA	$\frac{148}{2.43}$	$\frac{67}{1.10}$	88 1.44	<u>57</u> 0.93	97 1.59	$\frac{151}{2,47}$	<u>118</u> 1.93	$\frac{137}{2,25}$
rai cons	Potas- Carbon-E sium (K) (CO ₃) (NORT	RY CREEK NEAR YORKVILLE (STA. 2/9)		$\frac{4}{0.13}$	SLAN RI			ISSIAN R	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minerai	otas- C sium (K)					RUS			RI								$\frac{1.3}{0.03}$
	Sodium F (No)									<u>9.2</u> 0.40	<u>5.5</u> 0.24	0.29	$\frac{4_{*}.4_{*}}{0.19}$	0.27	8.6 0.37	7.8	7.4
	Mogne- Sium (Mg)				2,28 ^e					2.34 a	1.28 ^d	1.540	96°0	1,68 ^d	2,600	2,02 ^d	$\frac{11}{0.92}$
	Calcium (Ca)																$\frac{28}{1.40}$
	는 이스			7.3	7.1 8.5		8.0	7.8		7.9	7.2	7.4	7.7	<u>8,1</u>	7.8 8.2	7.5	8.1 8.2
Specific	(micromhos PH at 25°C) a			700	250 ³		545	250		157	152	179	112	184	278	222	252
	gen (n 9/oSat	-		101	06		115	93		95	6.8	06	97	110	93	101	108
	Disso			5.6	8.0		9.8	8.8		9.2	9.8	9.6	10.4	13,3	9,6	10.9	10.0
	Tsmp in oF			77	12		75	65		63	52	55	54 1	45 1	58	54 1	67 1
	Dischorga Tsmp in cfs in of			1/2 cst.	1/4 est.		116	240		172	5,420	1,430	29,200	2,790	54.8	1,880	755
	00 te ond time sompled P.S.T.			7-7-65 1450	9-28-65 1115		7=7=65 1510	9-29-65 1030		10-16-64 0910	11-10-64 0930	12-2-64 1415	1-6-65 1135	2-3-65 1125	3=12=65 1115	4-14-05 1230	5-12-65 1030

) as todicated.

Field determination. ø

Laborstory analysis. ء

Analyzed by Californis Department of Public Health, Division of Laboratories. Mineral analyses made by United States Ceological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMMs) as Indicated. o

Sum of cslctum and magnesium in epm.

e

	Analyzed by d			uses				DWR			OWR					Field determi- nstions	 	
	bid - Coliform 4 ity MPN/ml			6.2 1 62.	23. 62.	23. 23.												
1	- Å			15	4	2		<u>ی</u> ا	51		۵I	νI		51				
	N C O 3			2	4	1		0			40	100		2				
				121	134	116		127	140		192	244		128				
	t ent			13	14	13		10			11						 	
Totel	solved solved in ppm					148		150			234							
	Other constituents				00 0			$F0_4 = 0.04$ $Fe^4 = 0.04$ Color = 0	PO4 = 0.21	- 00	$F_{e}^{U_4} = 0.10$ $F_{e}^{U_4} = 0.10$ $Color = 0$	PO4 = 0.06		$P0_4 = 0.03$				
	Silica (SiO ₂)					13												
lion	5			0.4	0.3	0.2		0.0			1.4				284)			
million Der mi	Fluo- ride (F)		(CONT.)					$\frac{0.1}{0.00}$		A. 282	$\frac{0.1}{0.00}$				(STA.			
ports per million equivalents per million	Ni- Irote (NO ₃)	0. 1)	(6 • V			0.8		0.4	0.4	ALE (S7	$\frac{8,3}{0,13}$	$\frac{20}{0,32}$	A. 283)	0.3	PLANT			
e quivo	Chio- ride (Ci)	CION (N	URG (ST.	3.9 0.11	5.4 0.15	4.0 0.11	CREEK (STA. 281)	4.8 0.14	4.0 0.11	CLOVERD	3.9 0.11	4.2 0.12	EEK (ST	$\frac{1.7}{0.05}$	S POWER			
Ē	Sul - fots (SO4)	STAL RE	HEALDSE			$\frac{10}{0.21}$	LEEK (S	$\frac{7.7}{0.16}$		K NEAR	54 1.12		PHUR CR		GEYSER			
tituents	Bicar- bonate (HCO ₃)	NORTH COASTAL REGION (NO.	R NEAR B	$\frac{134}{2.20}$	<u>158</u> 2,59	$\frac{140}{2 \cdot 29}$	MAACAMA CR	158 2,59	158 2.59	UR CREE	$\frac{164}{2,69}$	<u>158</u> 2.59	LITTLE SULPHUR CREEK (STA. 283)	146 2.39	K ABOVE			
Mineral constituents	Carban- Carban- (CO ₃)	NO	RUSSIAN RIVER NEAR HEALDSBURG (STA. 9) (CONT.)	4 0.13	0.00	0,00	MA	0,00	6 0.20	BIG SULPHUR CREEK NEAR CLOVERDALE (STA. 282)	10 0.33	9 0,30	LIT	4 0,13	BIG SULPHUR CREEK ABOVE GEYSERS POWER PLANT (STA. 284)			
Mine	Potos- sium (K)		RUSS			$\frac{1.3}{0.03}$		1.3 0.03		. 07	1.5 0.04				BIC SULF			
	Sodium (No)			8.1 0.35	9.6 0.42	$\frac{8,3}{0,36}$		6.8 0.30			<u>11</u> 0.48						 	
	Mogne- sum (Mg)			2.42 ^e	2.68	$\frac{12}{1,02}$		19 1.59	2.80 ^e		22 1.80	4,88 ^e		2.56				
	Calcium (Ca)					26		19 0,95			41 2.04							
	Allo A			8.0 8.5	8,2 8,3	8,4 8,0		$\frac{8,1}{8,3}$	7 <u>, 8</u> 8 <u>, 5</u>		<u>8.6</u> 8.6	<u>8.6</u> 8.5		7 <u>, 9</u> 8, 5	_		 	-
	conductance (micromhas at 25°C)			256	282	251		252	285 ^a		615	490 ⁸		260 ^a		067		
	ved ci en (n %Sat			06	113	96		06	89		111	118		92		107		-
	Dissalved oxygen ppm 2/0.5at			8.5	9*6	8.0		8,5	0.6		10.2	10.4		9,1		9*6		
	Temp in aF			65	76	78		65	60		68	72		61		70		
	Dischorgs Temp in cfs in GF			375	140	199		6. I	1.5		16	6.4		2-3 est.				
	Dote ond time sampled P.S.T			6-2-65 1300	7-13-65 1230	9-14-65 1505		7-7-65 0800	9-29-65 0950		7-7-65 0905	9-28-65 1245		9-28-65 1425		9-28-65 1355		

a Field determination.

b Laboratory analysis.

a

Analyzed by California Oepartment of Public Health, Division of Laboratories.

Mineral analyses ande by United States Geological Survey, Mater Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of calcium and magnesium in epm. p

æ

heavior	by to			DWR			DWR			DWR		_	DWR	Field	determ1- nations			USGS
	Totol N C a hor why with the second s	_												Sin .	n n			62. 620.
- int				<u>تا</u>	<u>ن</u> ار،		9	~l		%	101		32	1	25	3		5
	SOJO N N			0	0		12	13		0	0							0
1	Totol Ppm			172	152		159	193		172	179		196					92
Per-	end -			14			16			13			10					17
Totol	solved in ppm			194			203			186			221					
	Other constituents			$Fe^4 = 0.23$ Color = 0	P0 ₄₄ = 0.03	PO = 0.06	$F_{e}^{\mu} = 0.06$ Color = 0	PO4 = 0.10	70°0 = 04	$Fe^4 = 0.08$ Color = 0	P04 = 0.04		$P0_{4} = 0.10$ Fe ⁴ = 3.6					
ł	Si02)														_			
uoi	Baron Silica (B) (SiO ₂)			0.4			0.2			0.1			0.2					0.4
equivalents per militon	Fluar ride (F)			0.00			0.00			0.00			$\tfrac{0.1}{0.00}$	(682			(1.8.1	
lients	N:- 1rate (N0 ₃)	2		0.3	0.0	286)	0.01	$\frac{0.9}{0.01}$	37)	0.01	$\frac{0.2}{0.00}$	(88)	0.01	(STA.			D (STA.	
equivo	Chio- ride (CI)	NORTH CUASIAL RECION (NO. 1)	A. 285)	$\frac{5 + 6}{0 + 16}$	5.6 0.16	(STA.	6.8 0.19	$\frac{7.9}{0.22}$	(STA. 287)	5.5	$\frac{5.7}{0.16}$	(STA. 288)	$\frac{7.7}{0.22}$	RUSSIAN RIVER NEAR HOPLAND (STA. 289)			RUSSIAN RIVER NEAR HOPLAND (STA. 8.4)	4.2 0.12
ē	Sul - fate (S 04)	IAL REC	ASH CREEK (STA. 285)	<u>18</u> 0.37		Y CREEK	32 0.67		CREEK	<u>17</u> 0.35		FELIZ CREEK	22 0.46	R NEAR			ER NEAR	
fituents.	Bicar - banate (HCO ₃)	TH CUAS	ASH CR	188 3.08	179	CUNMISKEY CREEK	$\frac{16\sigma}{2.72}$	3.26	PIETA	<u>198</u> 3.24	<u>209</u> 3.42	FELIZ	$\frac{233}{3,82}$	AN RIVE			IAN RIV	<u>118</u> 1.93
Mineral constituents	Corbon- (CO ₃)	NOR		11 0.37	4 0.13	0	6 0.20	0.33		8 0.27	5 0.17		0.00	RUSSI	_		RUSS	0.00
Mine	Polas- C sium (K)			$\frac{1.4}{0.04}$			2.2 0.05			<u>1.9</u> 0.05			<u>1.5</u> 0.04					
	Sodium (No)			<u>13</u> 0.56			14 0.61			12 0.52			10 0.44					8.4
	Magne- S sum (Mg)			1.30	3.04		1.53	3.86 ^e	_	16 1.34	3.586	-	<u>25</u> 2.07					1,84
	Calcium N (Ca)			$\frac{43}{2.14}$			33			42 2.10			<u>37</u> 1.85					
	I ala			8.6 8.6	8.4 8.4	_	8.5	7.8		8.5	8.5		8.2 8.2		7.5	7.5		7.8
	conductance (micramhas at 25°C)			379	380 ⁻³		361	435 ^a		378	440 ^a		4.23		200	200		212
0	o Sat			100	97		142	80		103	86		105		106	92		79
	Dissolved oxygen ppm 0/oSat	-	_	4.6	6.8		11.1	7.9		9.2	9.5		9.3		9.8			1.7
	Temp in of			66	80		84	70		2 est. 70	52		71		67			61
	Dischorge Temp in cfs in of			2 est. 66	1 1/2 cst. 08		1/2 est. 84	1/4 est. 70		2 69t.	1 1/2 cst. 52		Ponded		16.7	255		233
	0 offe ond time sompled P.S.T			7-7-65			7-7-05 1320	9-28-65 1045		7-7-65 0955	9-29-65 0730		7-7-65 1030		7-7-65	9=28=65 0055		10-16-64 0745

a Field determination.

Laboratory analysis. ٩

Analyzed by California Department of Fublic Health, Division of Laboratories. Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of calcium and magnesium in epm. υp

a

225

	7			70													
	Anoly by 6			0.SGS											DUR		
	bid - Coliform Analyzed ity MPN/mi by d			2,400. 2,400.	62. 620.	62. 62.	130. 620.	23. 62.	23. 230.	62. 130.	6.2 23.	23. 230.	21. 62.				
Tur-	Pia ala			400	67	800	200	09	80	40	35	28	5		<u>.</u>	9 کا	
	Hardness as CaCO ₃ Tatol N C. ppm ppm			30	~7	0	7	-		2	'n	2	2		13		
				57	56	42	69	91	80	82	86		84		126	110	
Par-	- pos			20	19	26	15	15	16	15	15	16	15		16		
Total	adids in ppm									125			111		148		
	Other constituents								00.0				s = 0.0 4 = 0.05	0.08	$\frac{c_0}{Fe} \frac{0.00}{6} = 0.10$ Calor = 0	4 - 0.08	
	Silica (SiO ₂) 0									12 ABS PO ₄			ABS PO44	100	223	1004	
U.	Baron Sili (B) (Si			0.3	0.2	0.1	0.1	0.3	0.2	0.2	0.3	0.2	0.1		0.4		
equivalents per million	Fiuo- Bc rida ((.10	0	0	0	01	-	0	0	01	0	0		0,00		
ports psr million valents per mil	Ni- F trate (NO ₃)	-	8a) (Co							2.2 0.04			$\frac{0.8}{0.01}$		0,09	$\frac{3.1}{0.06}$	
equivale	Chlo- rida (CI)	NO (NO.	(STA.	$\frac{4.4}{0.12}$	2.8	$\frac{2.4}{0.07}$	<u>2.6</u> 0.07	3.9	<u>3.8</u> 0.11	3.7	3./	3.1	2.8 0.08	(067 •V	0.27	0, 19	
L.	Sul fote (SO ₄)	VL REGIO	(INVIIIO)		.10		.1.0			9.0			0.21	GER (ST)	0.35		
	Bicar- S bonate f (HCO ₃) (5	NORTH COASTAL REGION (NO. 1)	RUSSLAN RIVER NEAR MOPLAND (STA. 8a) (Cont.)	0.08 0.98	66 1.08	52 0.85	67.1	1.80	94 1.54	93	<u>101</u> 1,66	92 1.51	1.04	M. NAB CREEK (STA. 290)	138 2,26	2.02	
Mineral constituents	Corbon - Bi o1s (CO ₃) (H	NORT	AN RIVE	0.00	0,00	0.00	0,00	0,00	0,00	2 0.07	00.00	2 0.0/	0,00	W	0*00	0.00	
Minero	Patas - Ca	-	RUSSI	10	10	10	10	10	10	0.04	10	10	0.03		0.02	10	
	Sodium Po (Na)			6, 5 0, 2B	<u>6.2</u> 0.27	0.30	$\frac{5 \cdot 7}{0.25}$	1.6	<u>7.2</u> 0.31	6.6 1 0.29 0	7.2	6.8 0.30	0.31		0.48		
	Magna- So sum (pM)			1,14	1.12	0.84	1,380	1,82	1.60	0.69	1.72	1.62	0.68		17 1,42	2,20	
	Calcium Ma (Ca)					19		1	1	19 0.95	-		20 8		22	1.4	
			-	7.0	7.9	/.2	7.6	7.8	7.4	/.4 8.4	/. h	1.4	1.1		7.11	2.5	
pscific	(micramhas at 25°C)			141	137	105	155	206	184	168	189	185	161		301	255 ^a	
				62	16	06	53	89	76	98	84	113	10.7		56	89	
	Dissolved oxygen ppm %050			9.0	9.5	10.2	11.4	9.6	10.1	10.0	7.8	10.5	10.3		6.6	0.0	
				51	55	6 %		53	51	57	6.5	69	62		20	59	
	Discharge Temp in cfs in af			2,520	1,280	6,800	1,740 43	167	470	6.93	314	222	247		1/2 ast.	1/4=1/2 est.	
	001a ond tims somplad P.S.T			11-10-64 0810	12-2-64 1230	I-6-65 1015	2-3-65 1000	3=12=65 0935	4 = 14 = 65 1050	5 = 12 = 65 0905	6=2=65 1130	7 = 13 = 0.5	9-14-05 0905		7=7-65 1120	9-28-05 0935	

a Field determination.

b Laboratory analysis.

c Analyzed by California Department of Public Health, Ulviaton of Laboratories. d Minoral analyses mode by United States Geological Sorvay, Mater Resources Ulviaton (USGS) or California Department of Mater Researces (UMR) as indicated. a Sum of colcium and magnetium in cym.

	per																			
	Anoiyzed by d				DAR		DWR			DWR			DWR			DWR	DWR		DWR	
	bid - Coliform																			
T ur -	- A -	مره			ঁপ		∞				\Im		20	2		2	4 1		ଅ	5
	0	U E N G			5		0	0		0	0		5				-7			_
		Totol PPm			124		91	143		179	126		73	82		77	94		152	153
Per	t poor	E			13		83			32			13			12			10	
Total	solved	00 v:			136		769			304			115			109			186	_
	Other constituents				$Fe^4 = 0.27$ Color = 0		$P0_4 = 0.11$ $Fe^4 = 5.3$	$PO_4 = 0.13$ Fc ⁴ = 0.31		$PO_4 = 0.35$ $Fe^4 = 6.7$	$P0_4 = 0.10$ Fc = 0.02	BO = 016	$Fe^4 = 3.5$ Color = 30	$P0_4 = 0.07$ Fe ⁴ = 0.21	11 0 - 01	$Fe^4 = 2.0$ Color = 5	$P0_4 = 0.06$ $Fe^4 = 0.58$		54	$P_0 = 0.03$ $F_6^4 = 0.12$
	Silico	(2)(2)																		
tion million	Boron				0.2			49		3.0	5.6	(STA, 294)	0.2		. 295)	0.2			0.0	
per n	Fiuo-				0.00	292)	0.02		293)	0.02		NO (STA	0.10		O (STA	$\frac{0.2}{0.01}$			0.00	
ports per miliion squivolents per mil	- IN	(°0N)	. 1	(1)	0.5	S (STA.	<u>1.1</u> 0.02	0.01	STA.	0.00	0.00	ENDOCI	1.0	1.6 0.02	ENDOCIN	0.01	0.01		0.01	0.0
e quive	Chio-	(CI)	ON (NO.	STA. 29	5.8 0.16	SPRINGS	51	<u>107</u> 3.02	SPRINGS	<u>10</u> 0,28	<u>16</u> 0.45	BELOW LAKE MENDOCINO	2.3	2.9 0.08	ABOVE LAKE MENDOCINO (STA. 295)	2.0 0.06	<u>3.2</u> 0.09	A. 296	$\frac{4.1}{0.12}$	4.5 0.13
Ē	Sul -	(SO4)	AL REGI	CREEK (<u>10</u> 0.21	VICHY	14 0.29		VICHY	22 0,46			$\frac{7.1}{0.15}$		ABOVE	6.6 0.14		EEK (ST	$\frac{9,7}{0.20}$	
tituents	Bicor -	(HCO ₃)	NONTH COASTAL REGION (NO. 1)	ROBINSON CREEK (STA. 291)	$\frac{149}{2.44}$	K BELOW	474 7.77	741 12,14	K ABOVE	<u>289</u> 4.74	<u>248</u> 4.06	T FORK,	$\frac{87}{1.43}$	97 1.59	T FORK,	$\frac{91}{1.49}$	1.80	COLD CREEK (STA. 296)	$\frac{170}{2.79}$	<u>169</u> 2.77
Mineral constituents	1	(CO3)	INON	RO	0.00	SULPHUR CREEK BELOW VICHY	70	99 3.30	SULPHUR CREEK ABOVE VICHY	2 0.07	90.30	RUSSIAN RIVER, EAST FORK,	0.00	0.00	RUSSLAN RIVER, EAST FORK,	0.00	0.00		6 0.20	6 0.20
Mine		(X)		_	$\frac{1,3}{0.03}$	IdTINS	10 0,26		SULP	$\frac{3.7}{0.09}$		SIAN RIV	$\frac{1.2}{0.02}$		SLAN RIV	0.8 0.02			$\frac{1.0}{0.02}$	
	c	(0N)			8.5		228 9.92			42 1.83		RUS	<u>5.0</u> 0.22		RUS	4.8 0.21			<u>8.0</u> 0.35	_
		(Mg)			$\frac{12}{0.98}$		1.32	2.86 ^c		$\frac{13}{1.08}$	2.52 ^e		6.8 0.56	<u>1.64</u> e		<u>6,6</u> 0.54	1.88		$\frac{15}{1.24}$	3.06
	Colcium				30		10			<u>50</u> 2,50			18 0.90			20 1.00			$\frac{36}{1.80}$	
	I	م]ه			8.3 8.3		8.8	<u>8.5</u> 8.7		$\frac{7.9}{8.4}$	7 <u>*9</u> 8.5		7.3	<u>7.3</u> 8.2		7.8 8.2	8.2		7.8 8.5	<u>8.3</u> 8.5
pecific	(micromhos	10 0 1			256		1090	1730 ^a		523	7100		164	175 ^a		167	210 ⁸		327	315 ⁸
		% Sot			121		123	90		97	102		108	90		104	67		101	104
	Dissolvsd oxygen	ppm %Sot			9.3		9.1	9.5		7.3	10.0		10.8	8.5		9.3	9,2		9.9	10.5
	Temp in oF				86		06	56		88	62		60	65		70	64		62	59
	Dischorgs Temp in cfs in oF				1/2 eat.		3/4 cst. 90	l est. 56		1/2 est.	3/4 est.		177	258		188	290		5 est.	4 eat.
	Dots ond time	P.S.T			7-7-65 1150		7=8=65 1315	9-28-65 0830		7-8-65 1345	9=28-65 0855		7-8-65 1140	9-27-65 1400		7-8-65 1040	9-27-65 1320		7-8-65 0900	9-27-65 1305

a Fleld determination. b Laboratory analysis.

Analyzed by California Dapartment of Public Health, Division of Laboratorias. Mineral analyses mado by United Status Goological Survey, Mater Resources Division (USGS) or California Dopartment of Mater Resources (DMR) as indicated.

Sum of calcium and magnesium in apm. Θ

	besy		-	- su			ŝ										
	A noi by			rieid determi- nations			uses										
	Coliform Anolyzed MPN/mi by d						23. 230.	62. 230.	23. 230.	23. 23.	23.	2.3 23.	62. 230.	23.	2.3 23.	6.2 6.2	5. 23.
1 5	Pid Pid			14	2		-	70	50	700	230	1,000	70	99	40	38	2
	Hordness os CoCO ₃ Totol N.C. pom ppm						5	61	64	5	0	e	3	5	2	5	1
							89	82	64	40	52	73	68	64	68	12	88
a							14	17	8	16	13	13	14	13	14	13	14
Total	solved in ppm													96			116
	Other constituants													A8 0.00 A85 0.0 P0 ₄ = 0.10			AB = 0.00 ABS = 0.0 $P0_4 = 0.03$
	Silico (SiO ₂)		297)	_		(00)								12			10
llion	Boron (B)		(STA.				0.5	0.	0.5	0.1	0.1	0.2	0.2	0.1	0.3	0.1	0.2
miltion per miltion	Fluo- ride (F)		ROUSE			HOUSE								_			
	Ni - trote (NO ₃)	1	POWER 1			POWER 1								$\frac{1.1}{0.02}$			0.5
ports pr equivolents	Chio- ride ((CI) (1	NORTH COASTAL REGION (NO. 1)	EAST FORK, AT POTTER VALLEY POWER HOUSE (STA. 297)			RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY PUWER HOUSE (STA.	$\frac{3.7}{0.10}$	<u>5.2</u> 0.15	$\frac{3.3}{0.09}$	$\frac{1.0}{0.03}$	$\frac{1.2}{0.03}$	$\frac{2.2}{0.06}$	$\frac{2.2}{0.06}$	<u>1.8</u> 0.05	$\frac{1.4}{0.04}$	$\frac{1.9}{0.05}$	<u>2.7</u> 0.08
ē	Sul - fote (SO ₄)	AL REGI	POTTER			POTTER								7.0			<u>9.0</u> 0.19
1:tuents	Bicar - bonate (HCO ₃)	TSA00 HO	RK, AT			RK, AT	$\frac{103}{1.69}$	<u>98</u> 1.61	76 1.25	46 0.75	63 1.03	85 1.39	$\frac{79}{1.29}$	76	81 1.33	84 1.38	<u>106</u> 1.74
Mineral constituents	Corbon - E	NOR				EAST FC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Miner	Potos- Co sium (K)	-	RUSSIAN RIVER,			RIVER,								0.02			1.3 0.03
	Sodium P (No)	-	RUSSIAN			RUSSIAN	6.8 0.30	7/ 0.33	6.4 0.28	3.4	3.6 0.16	<u>5.1</u> 0.22	5.1 0.22	4.4 0.19	<u>5.1</u> 0.22	4.9 0.21	6 <u>,9</u> 0.30
	Magne- sium (pM)					_	1.78 ^c	1.64	1.28 ^e	0.79e	1.04 ^e	1.46e	1.36 ^e	4.0	1.36	1.42c	<u>6.2</u> 0.51
	Colcium (Co)	_												<u>19</u> 0.95			<u>25</u> 1,25
	I alv			7.8	1.8		8.0	<u>7.6</u> 8.2	7.4	<u>6,8</u> 7.5	$\frac{7.6}{7.6}$	7.7	7.5	$\frac{7.6}{8.2}$	7.8	7.8	$\frac{7.4}{8.0}$
pecific	conductance (micromhos p at 25°C)			145	203		190	194	153	87	118	157	151	143	153	951	194
	ygan (n 9/oSot			76	86		102	71	107	66	95	06	112	98	113	107	103
	Dias ppm			8.8	8.0	_	9.3	7.6	11.4	11.8	11.8	6.9	12.2	10.1	10.5	10.0	10.2
	and Fa	-		66	66		65	52	52 1	44	41	50	51 1	55 1	64 1	63	58
	Discnorgs Temp in cfs in of			215	326		24.7	292	279	310	326		310 eet.	310	224	150 eet.	
	P.S.T			7=8=65 0950	9-27-65 1235		10-15-64 1445	11=10=64 0640	12-2-64 1100	1=6=65 0845	2-3-65 0825	3-12-65 0820	4=14=b5 0850	5-12-65 0750	6-2-65 0930	7-13-65 0930	9-14-65 0815

Field determination.

Laboratory analysis.

Analyzed by California Department of Public Health, Division of Laboratories.

Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or Galifornia Department of Water Resources (DWR) as indicated.

Sum of calcium and magneeium in apm.

ANALYSES OF SURFACE WATER

$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	Billing Other construents Billing Discrete Discrete
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} D \\ D \\ P \\$
$ \begin{bmatrix} P_{12}^{0} & = 0.03 \\ F_{12}^{0} & = 1.4 \\ 0.01 \text{ or } = 0.3 \\ F_{12}^{0} & = 0.03 \\ F_{12}^{0} & = 0.03 \\ F_{12}^{0} & = 0.03 \\ F_{12}^{0} & = 0.01 \\ 0.01 \text{ or } 1 \end{bmatrix} \begin{bmatrix} 154 & 17 \\ 122 & 19 \\ 122 & 19 \\ 101 & 1 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{12} \\ \frac{1}{12} \\ 113 & 1 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{12} \\ \frac{1}{12$	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
FUNCTIVE CREEK (STA. 300) 0 164 8.7 0.4 0.01 0.00 0.2 $t^{0.4}_{ch}$ $= 0.01$ 154 12 133 3 $\frac{4}{ch}$ 0.00 0.10 0.10 0.00 0.2 $t^{0.4}_{ch}$ $= 0.01$ 154 12 133 3 $\frac{4}{ch}$ 0.11 2.05 0.01 0.00 0.02 $t^{0.4}_{ch}$ $= 0.02$ 154 12 133 3 $\frac{4}{ch}$ 0.11 2.05 0.01 0.00 0.02 $t^{0.4}_{ch}$ $= 0.02$ 141 0 $\frac{4}{ch}$	$\frac{4}{0.0} \frac{0.0}{0.00} \frac{0.2}{0.00} = \frac{100}{0.00} \frac{154}{0.00} = \frac{0.01}{154} = \frac{112}{12} = \frac{13}{3}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{76}{0.00}$ $\frac{0.3}{0.00}$ $\frac{0.3}{0.00}$ $\frac{141}{0.00}$

Laboratory analysis. م

Analyzed by California Department of Public Nealth, Division of Laboratories. Mineral analyzes made by United States Geological Survey, Water Resources Division (USGS) or California Department of Mater Resources (DMR) as indicated. Sum of calcium ond magnosium in epm.

a

TABLE D-2 ANALYSES OF SURFACE WATER

(PMR) an Indiana

Sult- constant Chros- constant Fuer (constant Fuer (constant) Constant Processes (constant) Proce				Specific	Specific						Min	eral con	Mineral constituents	ĉ	equivalents	5 4	milion per million	u			Totol			Tur-		
MX REGION (00.2) 1	Dischorge Temp Dissolved conductioned profile Colourn Magner Sodum Potos- Corbon- in c1s m ⁻¹ orygen (micromote profile) and an 23 ^o Ci b ⁻¹ (Co) and and an and an and an an and an an and an an an an an and an an an and an	Dissolved conductioned PH Colcum Magner Sodum Potar- Corbon- oxygen (micromina PH Colcum Magner Sodum Potar- Corbon- n 25°C) = Colcum Magner (No) (No) (V) (Co)	Dissolved conductioned PH Colcum Magner Sodum Potar- Corbon- oxygen (micromina PH Colcum Magner Sodum Potar- Corbon- n 25°C) = Colcum Magner (No) (No) (V) (Co)	conductioned PH Colourn Magner Sodium Polas- Carbon- imm.combas 25 C() (Mg) (Nd) (X) (C) (C)	conductioned PH Colourn Magner Sodium Polas- Carbon- imm.combas 25 C() (Mg) (Nd) (X) (C) (C)	bH Calcum Magne- Sodum Potas- Carbon- (Ca) sum (Na) (Na) (X) (CO3)	Magne- Sodium Potas- Carbon- sium (Na) (K) (CO3)	Magne- Sodium Potas- Carbon- sium (Na) (K) (CO3)	Sodium Potas- Carbon- (Na) (CO3) (CO3)	Carbon- ots (CO _S)	Carbon- ots (CO _S)		Bicar- bonate (HCO ₃)	Sul - tare (SO4)	Chlo- ride (CI)			soron Si (B) (S	102)		solved solids mgg		s CaCO ₃ s CaCO ₃ fai N C		MPN/mi	
Sr. Initial (STA), 72) Sr. Initial (STA), 72)	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	SAN FR	14	ANCIS	ВΛΥ	REGION	(NO. 2)										-
0.4 0.4 0.4 0.1 0.4 0.1 0.5 0.4 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.1 0.5 <td>NAIA R.I</td> <td>NAIA R.I</td> <td>NAIM R1</td> <td>NALM R.1</td> <td>ITN VIEW</td> <td>NAI'A RI</td> <td>ITH WIFN</td> <td>NAI'A RI'</td> <td>NAI'A RI'</td> <td>NAPA RAV</td> <td>VAPA RIV</td> <td>-</td> <td>/ER NE-</td> <td>sT.</td> <td>RELENA</td> <td>(STA. 72</td> <td></td>	NAIA R.I	NAIA R.I	NAIM R1	NALM R.1	ITN VIEW	NAI'A RI	ITH WIFN	NAI'A RI'	NAI'A RI'	NAPA RAV	VAPA RIV	-	/ER NE-	sT.	RELENA	(STA. 72										
$ \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59 1.1 11 381 §.8 3 3 24° 18 18	$\begin{array}{c c} 381 & \frac{6.8}{8.3} \\ \hline 3.24^{\circ} & \frac{18}{3.24^{\circ}} \\ \end{array}$	$\begin{array}{c c} 381 & \frac{6.8}{8.3} \\ \hline 3.24^{\circ} & \frac{18}{3.24^{\circ}} \\ \end{array}$	$\frac{6.8}{8.3}$ $\frac{1.8}{3.24}$	$\frac{18}{3.24}$ $\frac{18}{0.78}$	$\frac{18}{3.24}$ $\frac{18}{0.78}$	<u>18</u> 0.78	<u>18</u> 0.78	0.17	<u>5</u> 0.17		<u>197</u> 3.23		<u>12</u> 0.34			0.4								
1 0.1	425 53 9.1 84 158 7.0 0.96 ^e 0.48 0.00	9.1 84 158 $\frac{7.2}{7.0}$ $\frac{0.96}{0.48}$	84 158 $\frac{7.2}{7.0}$ $\frac{0.96}{0.48}$	84 158 $\frac{7.2}{7.0}$ $\frac{0.96}{0.48}$	$\frac{7.2}{7.0}$ $\frac{0.48}{0.48}$	$\frac{11}{0.96}e$	$\frac{11}{0.96}e$	11 0.48	11 0.48	0+00	0,00		4 <u>8</u> 0.79		<u>8.6</u> 0.24			0.3							-	
$ \frac{2.5}{0.04} \frac{0.2}{0.01} \frac{2.2}{0.1} \frac{2.2}{0.1}$	25 57 8.3 81 269 7.2 0.85 0.59 1.13 0.08 0.00	8.3 81 269 $\frac{7.2}{8.2}$ $\frac{17}{0.85}$ $\frac{7.2}{0.59}$ $\frac{2.6}{1.13}$ $\frac{3.3}{0.08}$.3 81 269 7.2 0.85 7.2 7.2 3.3 8.2 0.85 0.59 1.13 0.08	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{7.2}{8.2} \frac{17}{0.85} \frac{7.2}{0.59} \frac{26}{1.13} \frac{3.3}{0.08}$	$\begin{array}{c c} 17 \\ \hline 0.85 \\ \hline 0.59 \\ \hline 0.59 \\ \hline 1,13 \\ \hline 1,13 \\ \hline 0.08 \\ \hline \end{array}$	$\begin{array}{c c} 17 \\ \hline 0.85 \\ \hline 0.59 \\ \hline 0.59 \\ \hline 1,13 \\ \hline 1,13 \\ \hline 0.08 \\ \hline \end{array}$	$\frac{7.2}{0.59} \frac{26}{1.13} \frac{3.3}{0.08}$	<u>3.3</u> 0.08		0,00		94 1.54	$\frac{19}{0.40}$	20 0,56	4.3			36						62. 230.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$5,610 \qquad 56 \qquad 10.2 \qquad 98 \qquad 100 \qquad \frac{7.2}{7.3} \qquad \frac{8.4}{0.42} \qquad \frac{3.0}{0.25} \qquad \frac{6.5}{0.28} \qquad \frac{2.4}{0.06} \qquad \frac{0}{0.06} \qquad $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98 100 $\frac{7.2}{7.3}$ $\frac{8.4}{0.42}$ $\frac{3.0}{0.25}$ $\frac{6.5}{0.28}$ $\frac{2.4}{0.06}$	98 100 $\frac{7.2}{7.3}$ $\frac{8.4}{0.42}$ $\frac{3.0}{0.25}$ $\frac{6.5}{0.28}$ $\frac{2.4}{0.06}$	$\frac{7.2}{7.3} \begin{array}{ c c c c c c c c } \hline 8.4 \\ \hline 0.42 \\ \hline 0.25 \\ \hline 0.25 \\ \hline 0.28 \\ \hline 0.26 \\ \hline 0.06 \\ \hline \end{array}$	$\begin{array}{c c} \frac{8.4}{0.42} & \frac{3.0}{0.25} & \frac{6.5}{0.28} & \frac{2.4}{0.06} \end{array}$	$\begin{array}{c c} \frac{8.4}{0.42} & \frac{3.0}{0.25} & \frac{6.5}{0.28} & \frac{2.4}{0.06} \end{array}$	$\frac{3.0}{0.25} \frac{6.5}{0.28} \frac{2.4}{0.06}$	$\frac{2,4}{0,06}$		0.00		$\frac{39}{0,64}$	7.0 0.15	$\frac{3.6}{0.10}$	$\frac{2.5}{0.04}$			29		105					
$ \frac{9.8}{0.1.0} \qquad \qquad$	85 55 9.7 92 208 $\frac{7.2}{8.1}$ 1.6° 0.52 0.00 0.00	9.7 92 208 $\frac{7.2}{8.1}$ $\frac{7.2}{1.46}$ $\frac{12}{0.52}$	92 208 $\frac{7.2}{8.1}$ $\frac{7.2}{1.46}$ $\frac{12}{0.52}$	92 208 $\frac{7.2}{8.1}$ $\frac{7.2}{1.46}$ $\frac{12}{0.52}$	$\frac{7.2}{8.1}$ $\frac{1.2}{1.46}$	$\frac{12}{1.46}$ $\frac{12}{0.52}$	$\frac{12}{1.46}$ $\frac{12}{0.52}$	<u>12</u> 0.52	<u>12</u> 0.52	0.00	0.00		81 1.33		<u>8.5</u> 0.24		_	0.7								
$ \frac{6.0}{0.10} \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 58 9.3 92 271 $\frac{7.2}{8.4}$ $\frac{23}{1.15}$ $\frac{9.4}{0.77}$ $\frac{16}{0.70}$ $\frac{2.1}{0.05}$ $\frac{2}{0.07}$	9.3 92 271 $\frac{7.2}{8.4}$ $\frac{23}{1.15}$ $\frac{9.4}{0.77}$ $\frac{16}{0.05}$ $\frac{2.1}{0.05}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 7.2 \\ 8.4 \\ 8.4 \\ 1.15 \\ 1.15 \\ 0.77 \\ 0.77 \\ 0.70 \\ 0.05 \\ \end{array}$	$\begin{array}{c c} \hline 23\\ \hline 1,15\\ \hline 0,77\\ \hline 0,70\\ \hline 0,70\\ \hline 0,05\\ \hline \end{array}$	$\begin{array}{c c} \hline 23\\ \hline 1,15\\ \hline 0,77\\ \hline 0,70\\ \hline 0,70\\ \hline 0,05\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2.1}{0.05}$		2 0.07		$\frac{106}{1.74}$	<u>15</u> 0.31	14 0.39	9.8 0.16		0.6	36							
$ \frac{6.0}{0.10} \qquad \qquad$	79 51 10.4 94 209 $\frac{7.2}{7.9}$ $\frac{14.6}{1.44e}$ $\frac{14}{0.61}$ $\frac{0}{0.00}$	10.4 94 209 $\frac{7.2}{7.9}$ $\frac{1.40}{1.40}$ $\frac{14}{0.61}$	94 209 $\frac{7.2}{7.9}$ $\frac{14}{1.44}$ 0.61	94 209 $\frac{7.2}{7.9}$ $\frac{14}{1.44}$ 0.61	$\frac{7.2}{7.9}$ $\frac{14}{1.44}$ e $\frac{14}{0.61}$	$\frac{16}{1.44}$ e $\frac{16}{0.61}$	$\frac{16}{1.44}$ e $\frac{16}{0.61}$	$\frac{14}{0.61}$	$\frac{14}{0.61}$	0.00	0.00		90 1.48		$\frac{9.1}{0.26}$			0.3		00 0				1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.6 114 241 $\frac{7.2}{8.2}$ $\frac{20}{1.00}$ $\frac{8.3}{0.68}$ $\frac{15}{0.06}$ $\frac{2.4}{0.06}$	114 241 $\frac{2 \cdot 2}{8 \cdot 2}$ $\frac{20}{1 \cdot 00}$ $\frac{8 \cdot 3}{0.68}$ $\frac{15}{0.65}$ $\frac{2 \cdot 4}{0.06}$	114 241 $\frac{2 \cdot 2}{8 \cdot 2}$ $\frac{20}{1 \cdot 00}$ $\frac{8 \cdot 3}{0.68}$ $\frac{15}{0.65}$ $\frac{2 \cdot 4}{0.06}$	$241 \qquad \frac{2.2}{8.2} \qquad \frac{20}{1.00} \qquad \frac{8.3}{0.68} \qquad \frac{15}{0.65} \qquad \frac{2.4}{0.06}$	$\frac{20}{1.00} \frac{8.3}{0.68} \frac{15}{0.65} \frac{2.4}{0.06}$	$\frac{20}{1.00} \frac{8.3}{0.68} \frac{15}{0.65} \frac{2.4}{0.06}$	$\frac{8.3}{0.68} \frac{15}{0.65} \frac{2.4}{0.06}$	$\frac{2.4}{0.06}$		0.00		<u>102</u> 1.67	0.31	$\frac{13}{0.37}$	6.0 0.10				4 4 2	163			-		
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	12 74 8.5 100 281 $\frac{7.4}{8.7}$ $1.94e$ $\frac{19}{0.83}$ $\frac{19}{0.43}$	8.5 100 281 $\frac{7.4}{8.7}$ $\frac{1.94}{1.94}$ $\frac{19}{0.83}$	100 281 $\frac{7.4}{8.7}$ $\frac{1.94}{1.94}$ $\frac{19}{0.83}$	100 281 $\frac{7.4}{8.7}$ $\frac{1.94}{1.94}$ $\frac{19}{0.83}$	$281 \qquad \frac{7.4}{8.7} \qquad \frac{194}{1.94} e^{-\frac{19}{0.83}}$	$\frac{19}{1.94}$ e $\frac{19}{0.83}$	$\frac{19}{1.94}$ e $\frac{19}{0.83}$	<u>19</u> 0.83	<u>19</u> 0.83	0.40	0.40		94 1.54		$\frac{17}{0.48}$			0.5						<u> </u>		
$ \left \begin{array}{c c} & 0.1 \\ \hline 0.1 \\ 0.11 \\ 0.2 \\ \end{array} \right \left \begin{array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ \end{array} \right \left \begin{array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ \end{array} \right \left \begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ \end{array} \right \left \begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right \left \begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1.8 78 15.0 184 360 $\frac{7.4}{7.6}$ $\frac{2.88}{2.88^{\circ}}$ $\frac{20}{0.87}$ $\frac{0}{0.00}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	184 360 $\frac{7.4}{7.6}$ $\frac{20}{0.87}$ $\frac{0}{0.87}$	184 360 $\frac{7.4}{7.6}$ $\frac{20}{0.87}$ $\frac{0}{0.87}$	$\frac{7.4}{7.6} \qquad \frac{20}{2.88} e^{-\frac{20}{0.87}} \qquad \frac{0}{0.00}$	$\frac{2}{2,88}c \frac{20}{0.87} \qquad \frac{0}{0.00}$	$\frac{2}{2,88}c \frac{20}{0.87} \qquad \frac{0}{0.00}$	<u>20</u> 0.87 0.00	<u>20</u> 0.87 0.00				<u>163</u> 2.67		$\frac{15}{0.42}$			0.3								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.2 72 9.8 113 358 $\frac{7.2}{8.3}$ $\frac{1.9}{2.92^{\circ}}$ $\frac{19}{0.83}$ $\frac{1}{0.03}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.8 113 358 <u>7.2</u> 8.3 <u>7.97</u> ⁶ 0.83 <u>10</u>	113 358 $\frac{7.2}{8.3}$ $\frac{1.9}{2.92^{10}}$ $\frac{19}{0.83}$ $\frac{1}{0.03}$	358 $\frac{2.2}{8.3}$ $\frac{19}{2.92}$ $\frac{19}{0.83}$ $\frac{1}{0.03}$	$\frac{19}{2.92}$ $\frac{19}{0.83}$ $\frac{1}{0.03}$	$\frac{19}{2.92}$ $\frac{19}{0.83}$ $\frac{1}{0.03}$	$\frac{19}{0.83}$ $\frac{1}{0.03}$	$\frac{19}{0.83}$ $\frac{1}{0.03}$				<u>174</u> 2.85		$\frac{14}{0.39}$			0.1		000						
(5TA. 307) 0.3 129 129	0.8 70 8.6 97 384 $\frac{7.0}{7.5}$ $\frac{3.4}{1.70}$ $\frac{18}{1.46}$ $\frac{20}{0.87}$ $\frac{2.9}{0.07}$ $\frac{0}{0.00}$ $\frac{1}{3}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$384 \qquad \frac{7.0}{7.5} \qquad \frac{34}{1.70} \qquad \frac{18}{1.44} \qquad \frac{20}{0.87} \qquad \frac{2.9}{0.07} \qquad \frac{0}{0.00}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9 0.00	0.00		-10	<u>91</u>	$\frac{21}{0,44}$	14 0.39	<u>6.8</u> 0.11				ABS = 0.0 $PO_4 = 0.20$				1		
63 0.3 1.78 129	ALANED	VITANED	ALAMED	VITAMED	ALANED	ALAMED	ALAMED	ALAMED	ALAMED	ALAMED	ALAMED	12	A CREE	IK NEAR		STA. 30	()									
	513 <u>8.1</u> <u>2.38</u> ^c 48 <u>0.00</u>	$\frac{48}{2.58} e^{-\frac{48}{2.09}} = \frac{0}{0.00}$	$\frac{48}{2.58} e^{-\frac{48}{2.09}} = \frac{0}{0.00}$	$\frac{48}{2.58} e^{-\frac{48}{2.09}} = \frac{0}{0.00}$	$\frac{48}{2.58} e^{-\frac{48}{2.09}} = \frac{0}{0.00}$	$\frac{48}{2.58} e^{-\frac{48}{2.09}} = \frac{0}{0.00}$	$\frac{48}{2.58}$ $\frac{48}{2.09}$ $\frac{0}{0.00}$	48 2,09	48 2,09			-	<u>127</u> 2.08		63 1.78			0.3				-1	63			DWR

a Field determination,

b Laboratory analysis.

c Analyzad by California Oppartment of Public Health, Division of Labornoriee. d Mineral analyzes made by United States Geological Survey, Mater Resources Division (USGS) or California Department of Mater Resources (DMM) as Indicated.

Sum of calcium and magnesium in opm. q

ANALYSES OF SURFACE WATLE

	Anolyzed by			DWR		USG.5											
	Coliform MPN/mi					2.3	230. 620.	23. 62.	23. 23.	23.	2.3 23.	2,3 13.	2.3 23.	62. 230.	230. 620.	62. 230.	130. 230.
5						25	20	1~	150	15	00	70	10	80	20	100	70
	PPT COS					31	30	00 -7	42	66	112	12	82	51	34	30	78
				204		142	184	224	210	291	391	304	330	152	145	140	138
0	200- 200- 200-					42	37	1 %	27	29	3.2	29	28	39	38	35	39
Totel	spiloe beyloe												517				283
	Other constituents					A85 = 0.	ABS - 16-1	ABS = 0.1	ABS = 0.1	ABS =	A8S = 0.1	A8S = 0.1	$P_{0_4} = 0.30$	ABS = ()_0	ABS = (), 0		ABS = 1.0 POABS
	Silico (SiO ₂)												5.5				15
million	Baron (B)			0.4		0.2	0.4	0*0	0.4	0.5	1.2	0.7	0.9	0.3	0.3	0*0	0,1
per m	Fluar ride (F)		cont.)														
parts per million equivalents per mil	Ni- trate (NO ₃)	(NO. 2)	(STA. 307) (Cont.)		(11 . ATS								<u>3.6</u> 0.06				3.0
equivo	Chio- ride (CI)	RECION	s (STA.	91 2.57	NILES (3	68 1.92	<u>69</u> 1.95	89 2.51	<u>غ</u> د 0, 96	59	100 2.82	60 1.69	67 1.89	<u>62</u> 1.75	56 1.58	<u>51</u> 1.44	<u>62</u> 1.75
ē	Sul - fate (SO ₄)	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AR NILE		K NEAR								$\frac{116}{2.42}$				37 0.77
stituents	Bicar - bonate (HCO3)	SAN FRANCISCO BAY REGION (NO. 2)	REEK NE.	<u>185</u> 3.03	ALAMEDA CREEK NEAR NILES (STA.	<u>135</u> 2,21	<u>182</u> 2.98	<u>195</u> 3.20	<u>195</u> 3.20	246 4.03	<u> 308</u> 5,05	<u>266</u>	2.0	$\frac{1+0}{2.29}$	<u>131</u> 2.15	134	$\frac{134}{2.20}$
Mineral constituents	Carban- ate (CO ₃)	SAN	ALAMEDA CREEK NEAR NILES	0*00	ALAME	0.00	$\frac{3}{0,10}$	10 0.33	5 0.17	<u>14</u> 0.47	16	9 0.50	0.53	0.00	20.07	0,00	0,00
Mine	Potas- sium (K)	_	AL										<u>2.9</u> 0.0.7				<u>2.7</u> 0.07
	Sodium (Na)			68 2.96		4 <u>8</u> 2.09	50 2,18	$\frac{71}{3.09}$	<u>36</u> 1.57	2.35	85	<u>58</u> 2.52	60 2.61	1.91	$\frac{40}{1.74}$	<u>1.52</u>	4.2 1.83
	Magne. sum (Mg)			4.08 ^c		2.84 ^e	3.68°	² 64. 4	4.20 ^c	5.82 ^c	7.82 ^e	6.08 ^c	3.91	3,04	$\frac{2 \cdot 90}{2 \cdot 60} e^{-6}$	2.80 ^c	7.44 0.61
	Calcium (Ca)												3.69				4 J 2 + 15
	I			8.3		8.1	8.4	8.6	8.4	~ <u>~</u> 9*8	$\frac{7_*4}{8_*6}$	8.2	<u>ः</u> 8	80 00	/ + 0 9 · 4	8.2	8.1
Specific	conductonce (micramhos at 25°C)			759			615	,51	254	773	1,060	804	843		00 00 1	6++	+86
	ved (r en (r %Sat	-				106	92	92	66	,2	129	123	16	56	111	12	
	Dissalved axygen ppm 2/05at					9.6	· • 6	8°5	11.)	6.4	14.1	12.5	8. /	9.0	141.0	10.1	101,2
	Tenp in oF					Ģ	56	55	89.7	0D 7	53	59	99	65	19	80	30
	Discharge Temp in cfs in aF					27	3	3.5	123	34	14	22	14	î		18	9 J 80
	Date and time P.S.T			11-16-64 1520		10-9-64 1100	11-10-64 1400	12-10-6+ 1350	1-14-65 1320	2-11-65 0945	3-5-65 1530	4-6-65 1440	5-7-65 1300	6-9-05 1850	7-14-65	8-5-60 1500	9-2-65 1330

rcem (DUR) em indiune.

Field determination.

Laboratory analysis.

Analyzed by Galifornia Department of Public Nesich, Division of Laboratories. Mineral analyses made by United States Geological Survey, Waive Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of calcium and magnesium in epm.

	Anolyzed by d						0SGS									
	Hordness bid Coliform os CoCO3 ity MPN/mi fotoi N C a DPm DPm b															
Tur -	piq it's						5	- -	5	15	_	_			1~	
	Hordness os CoCO ₃ Totof N C ppm ppm						19	24	29	32	26	25	28	32	6 t	
	Totol PPm						180	204	231	235	210	260	284	324	370	
Per-	sod - rum						16	17	18	13	17	20	23	25	33	
Totol	solved sod - solids sod - ium in ppm										284				615	
	Other constituente									- 0 0i	$PO_{44} = 0.00$			As = 0.00	$PO_4 = 0.11$	
	Silica (SiO ₂)										5]				29	
UO	Boron Si (B) (S						0.2	0.5	0.4	0.4	0.3	0.5	0.5	0.9	1.7	
per million	Flue- B ride (F)		(1)													
	NI trate (NO ₃)	NO. 2)	(STA.								$\frac{0,3}{0,00}$				0.01	
equivalents	Chia ride (CI)) NOTES	ERMORE				12 0.34	<u>11</u> 0.31	14 0.39	$\frac{14}{0.39}$	12 0.34	$\frac{21}{0.59}$	30 0.85	$\frac{44}{1.24}$	<u>88</u> 2.448	
ę	Sul - fote (SO ₄)	BAY RI	EAR LIV								49 1.02				19 1.64	
ituents	Bicor- bonate (HCO ₃)	SAN FRANCISCO BAY REGION (NO. 2)	VALLE N				<u>180</u> 2.95	211	<u>2.28</u> 3.74	239 3.92	3.64	278	5.11	356 5,83	4.28 7.01	
Mineral canstituents	Carbon - B ote (CO ₃) ()	SAN FI	ARROYO DEL VALLE NEAR LIVERMORE (STA. /1)				8 0.27	0.13	9 0.30	4 0.13	0.03	0.13	0.00	0.00	0.00	
Minero	Potos- Co sium (K)	-	ARR							-	<u>1.6</u> 0.05				0.11	
	Sadium Pa (No)						$\frac{16}{0.70}$	<u>19</u> 0.83	$\frac{24}{1,04}$	<u>22</u> 0.96	20 0.8/ 0	$\frac{29}{1.26}$	38	<u>50</u> 2.18	3.14 0	
	Magne. Sa						3.60 0	4.08°	4.62 ^e	4 . 70°	2.05	5.20°	5.68°	6,48° 2	26	
	Calcium Ma (Ca)						- 1-	17	17	47	4.3	10		1.0	5.29	
	N TA			-			7.9 8.7	8.4 8.4	8.6	<u>8.4</u> 8.5	8.3	8.2	8.2	8.0	8.4 8.1	
actic	(micromhas at 25°C)						395 8	450 8	508	512 8	464 8	592	669	18.3	1,020	
S	d con (min Sol at						96	119	9.4	132	1 24	109	511	107		
	Dissolved oxygen ppm 9/cSol				_	_	10.3 9	11 5.21	9.3 9	13.0 13	11.0 12	9.6	9.6 11	8.7 10	8.0	 _
							53	95	60	60	69	0/	75	/8	29	
	Dischorge Temp in cfs in 9F			Ponded	Ponded	Ponded	53	32	14	2.9	1	3.0	1.2	0.2	0.1	-
	Oote and time P.S.T			10-9-64 1130	11+13-64 1200	12-8-64 1330	1-14-65 1545	2+8-65 1545	3-1-65 1700	4-6-65 1400	5-3-65 1230	6-10-65 1045	/=8=65 1100	8~3~65 1245	9~6-65 1200	

a Field determination.

Laboratory analysis. 9

Analyzed by California Department of Poblic Nealth, Otvision of Laboratories.

d Mineral analyses much by United States Geological Survey, Water Resources Division (USCS) or California Repartment of Water Resources (OWR) as indicated, e Sum of calcium and magnesium in epm.

ANALYILS OF SURFACT WATER

	Anaiyzed by d		DWR						_							
	Hordness bid-Caliform Analyzed as CoCO _S 11y WPN/mi by d Torol N C = ppm ppm															
Ture																
	Hordness as CoCO _S Totol N C PPm PPm												_			
			66	329	123	69	357	261	324	74	76	60	100			
10	end sh		246	20	316	343	,360	80	60	186	191	199	233			
Tote	alved solrds in ppm		2	1,420	~	ń	1,3	1,480	1,460	1	1	1	7			
	Other constituents		ABS = 0.0	ABS = 0.0	A85 = U.O	ABS = 0.0										
uo	Baron Silica (B) (SiO ₂)	SAN FRANCISCO BAY RECION (NO. 2) SAN FRANCISCO BAY RECION (NO. 2) ALTARONT CREEK BELDM ALTANONT UP SOUTH BAY AQUEDUCT (STA. 201)														
ar milian	Flua- ride (F)	JEDUCT			_											
valents per milian	NI	1. 2) BAY AQI														
ports per million equivalents par million	Chio- ride (CI)	SAN FRANCISCO BAY REGION (NO. 2) W ALTANONT TURNOUT OF SOUTH BAY	66 1.86	396	80 2,26	<u>34</u> 0,96	<u>398</u> 11.23	344	<u>386</u> 10.89	46 1.30	47 1,32	45 1.27	55 1.55			_
Ē	Su! - fate (SO4)	BAY RE RNOUT O	28 0.58	2.42	<u>57</u> 1.19	<u>13</u> 0.27	2.46	2.08	2.52	24 0.50	26 0.54	26	28 0+58			
ituents	Bicar- bonate (HCO ₃)	ANCISCO														
Mineral constituents in		SAN FRU														
Miner	Polas- Carbon- sum ote (K) (CO ₃)	CREEK BE											-		_	-
	Sodium F	D INOMAI														
	Magns- sum (Mg)	- I	$1,98^{\circ}$	6.57c	2.46 ^c	1.38 ^c	7.13 ^e	5.21	6.47°	1.48c	<u>1.52</u> e	<u>1,80</u> e	2.00			
	Calcium Magns- (Ca) (Mg)															
0.000	(micramhos PH at 25°C) b		456	2,450	571	389	2,360	2,460	2,440	340	336	367	415	-	-	
	Dissolved Con oxygan (m) ppm %Sof					ly	ly									
	Dischorge Temp in cfs in PF			Locol runoff only		Local runoff only	Local runoff only	Local rupuff only	Local runoff only							
	Date and time sampled P.S.T		10-1-64 1820	11+2-64 1545	12=1-64 1030	12-30-64 1545	2-9-65 1630	4-1-65 1530	5-11-65 1845	6 = 1 - 6 5 1500	7-1-65 1650	8=2-65 1445	9-1-65 1830			

o Field determination.

Leboratory analysis. .0

Analyzed by California Department of Public Health, Division of Laboratories.

Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of caleium and magnesium in cpm.

TABLE D-2 ANALYSES OF SURFACE WATER

Mar - In some on Champ on Links of

	7]
	Analyz by d			usgs												
Ű	bid - Caliform Analyzed 'fy MPN/mi by d a			2.3 23.	23. 62.	2.3 6.2	62. 230.	6.2 23.	2.3 23.	6.2 13,	.62 23.	2.3 13.	210.	230. 620.	2,400.	
Tur-	hid '+y b' a⊨ d			1	<u>ا</u> م	15	140	110	05	30	20	9	10	1	-7	
	SO VA			34	33	38	14	15	15	16	14	17	36	16	16	
				265	268	315	112	108	111	114	116	129	149	135	141	
d	- pos			22	22	23	22	23	22	21	23	21	17	19	18	
Totol	solved solved in ppm										180				207	
	Other constituents										AB = 0.00 ABS = 0.0 PO ₄ = 0.00				AB = 0.00 ABS = 0.02 $PQ_4 = 0.02$	
										<	11				 	
L.	Baron Silico (B) (SiO2)			0.2	0.2	0+2	0*0	0.4	0*0	0.1	0.1	0+1	0.1	0.0	0*0	
r million per million	Fluo- B ride (F)															
5	Nr- trote (NO ₃)	0. 2)	(STA, 82)								<u>3.7</u> 0.06				<u>2.5</u> 0.04	
ports pr equivolents	Chio - ride (Ci) (N) NOT9	ONE (ST	<u>28</u> 0.79	<u>29</u> 0.82	<u>36</u> 1.02	0.34	<u>11</u> 0.31	11	11 0,31	<u>11</u> 0,31	<u>11</u> 0.31	11 0.31	<u>10</u> 0.28	11 0.31	
5	Sul - for fore (SO4)	BAY RE	AR MADR		10]=		10	10	10	0.71	10	15	10	<u>32</u> 0.6/	
constituents	Bicor - S banote (HCO ₃) (SAN FRANCISCO BAY REGION (NO. 2)	REEK NE	<u>272</u> 4.46	<u>261</u> 4.28	<u>318</u> 5.21	1.88	1.80	1.85	119	1.98	<u>124</u> 2.03	2.20	<u>135</u> 2.21	153 2.51 0	
const	Corban - B. ote b (CO ₃) (H	SAN FR	COYOTE CREEK NEAR MADRONE	0.17	13 0.43	0.33	0.07	0.07	2 0.07	0,00	2 0.07	6 1 0.20 2	0.07	5 0.17	0.00	
Minerof	Potos- Cor sium (K)			10	10	10	10	10	10		0.04		10	10	2.2 n.06	
	C C	-		<u>1,5,1</u>	3 <u>52</u>	42 1.83	<u>15</u> 0.65	<u>15</u> 0.65	$\frac{14}{0.61}$	14 0.61	16 1.	<u>16</u> 0.70	$\frac{14}{0.61}$	15 0.6.	1, 2. 0.65 1.	
	Mogne- sum (Mo)			5.30	5.36 ^e 1.	6.30 ^e 1.	2.24 ^c 0.	2.16 ^c 0.	2.22 ^c 0.	2.28 0.	0.97	2.58°	2.98 ^c 0.	2+70°	11 0.92	
	Colcium Mos (Co) Sil			10	15	9	2.	~	5	101	27 1.35 0.	2.	~	~~	<u>38</u> 1.90 0.1	
-	100 100 100			8.3	8.0 8.6	8.5 8.5	7.8	7.8 8.3	8.4 8.3	8.1	8.4 1.	8.5	<u>, .8</u> 8.3	<u>8.1</u> 8.5	7.8	
	(micromhos of 25°C)			635	623 8	736	287 8	278	279 8	2,8	286 8	315 88	310 2	319 8	334 7	
Cach.	at of 2															
	Dissolved oxygen ppm 0/oSot			7 98	89	3 95	9 97	4 105	1 124	5 119	1 112	8 108	1 96	2 121	5 126	
-	PD Dia			8.7	9.3	10.3	0 10.9	11.4	5 13.1	5 12.5	11.1	9 10.8	9.1	5 10.2	0.5	
	ge Ten			70	56		50	53	55	55	60	59	64	25	97	
	Dischorge Temp in cfs in oF			0.5	0.3	2.2	63	83	05	0 ⁴ 7	6.5	16	96	15	83	
	Dote and time sampled P.S.T.			19-7-64 1100	11-10-64 1500	12-11-64 1250	1-14-65 1150	2-15-65 1215	3-4+65 1310	4-7-65 1220	5-6-65 1500	6-8-65 1710	7-7-65 1715	8-5-65 1200	9-8-65 1455	

Field determination.

æ

Laboratory analysis. 2

c Analyzed by California Department of Rublic Health, Otylaion of Laboratorics.
d Mineral analyzes made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DWR) as indicated.

e Sum of calcium and magnesium in epm.

	9	1														
	Anolyzed by d			USGS		_										
	bid- Coliform ify MPN/mt			6.2 23.	23. 230.	6.2 23.	230. 230.	5.0 6.2	2.3 2.3	130.	1.3 2.3	210. 510.	230. 620.	1,300.	23. 62.	
1.1]-	2	1	500	30	30	300	15	~	20		15	
	Hardness b as CoCO ₃ Total N C ppm ppm			106	91	66	29	31	31	18	28	28	30	33	39	
				360	296	321	100	117	121	110	126	128	138	151	175	
				15	14	15	17	15	15	13	16	16	15	15	15	
Totel	solved anids mon										190				248	
	Other constituents										A5 $= 0.00$ A85 $= 0.0$ P0 ₄ $= 0.0($			6	As = 0.00 A8S = 0.0 P0_4 = 0.15	
	Silica (SiO ₂)										19				14	
LOI	Baron S (B)			0.2	0.2	0.2	0*0	0*0	0.0	0.1	0.0	0*0	0*0	0,0	0.1	
parts per million valents per million	Fluo- ride (F)		(74)													
	N: trate (NO ₃)	N0.2)	(STA. 74)								$\frac{1,7}{0,03}$				3.0 0.05	
parts pe equivalents	Chlo- ride (GI)	EGION (S GATOS	22 0.62	17 0.48	17 0.48	<u>5.4</u> 0.15	6.3 0.18	7.0 0.20	4.9 0.14	6.6 0.19	$\frac{7.1}{0.20}$	7.8 0.22	7.9 0.22	9.0	
Ē	Sul - fate (SO ₄)	D BAY R	NEAR LO		-						43 0+90				57 1.19	
tituents	Bicor- banate (HCO ₃)	SAN FRANCISCO BAY REGION (NO. 2)	CREEK 1	<u>310</u> 5,08	$\frac{242}{3.97}$	$\frac{311}{5,10}$	86 1.41	<u>105</u> 1.72	1.80	$\frac{112}{1,84}$	113	114	<u>132</u> 2.16	<u>136</u> 2,23	164 2.69	
Mineral constituents	Corban- Corban- (CO ₃)	SAN F	LOS GATOS CREEK NEAR LOS GATOS	0.00	4 0.13	0.00	0.00	0*00	0.00	0.00	3 0.10	4 0.13	0,00	4 0.13	1 0.03	
Minel	Potas- C. sium (K)	-	D1								0.04				0.05	
	Sodium (No)			<u>30</u> 1.30	22 0.96	<u>25</u> 1.09	9.2 0.40	9.6 0.42	10	7.7 0.33	11 0.48	11 0.48	11 0.48	<u>12</u> 0.52	0.61	
	(6M) Sume Sum			7.20 ^c	5.92"	6.42 ^c	2,00 ^c	2,34 ^c	2.42 ^e	2.20 ^e	8.1 0.67	2,56°	2.76°	3.020	1.30	
	Calcium (Ca)										37				44 2.20	
	F are			8.1	$\frac{7.8}{8.3}$	8.0 6.0	7 <u>*6</u> 8.2	7.4 8.0	8.2	7 <u>*6</u> 7.8	8 • 0 8 • 5	<u>7.4</u> 8.5	7.8	7.6 8.4	8.4 8.3	
Specific	(micromhos PH at 25°C)			779	643	677	240	269	276	248	294	295	320	34.2	3 93	
	gen (r %oSat			106	101	105	67	98	86	102	82	107	108	116	103	
	Discalved oxygen ppm 0/oSof			10.0	10.4	11.1	10.4	11.1	10.6	11.5	ê. 5	11.0 1	10.3	10.8	9.2	
				64	56	54	53	49	52	49	56	56 1	63	65	69	
	Discharge Temp in cfs in oF			0.4	0.7	0.4	28	52	75	31	60	÷9	64	67	34	
	P S.T			10=6=64 1130	11-11-64 1130	12-10-64 1245	1-12-65 1100	2-11-65 0845	3-5-65 1410	4-9-65 1110	5-6-65 1145	6 - 9-65 1800	7-9-65 1440	8-5-65 0915	9-8-65 0915	

Field determination. сţ

Laborstory analysis. ,q

Analyzed by Californis Oepartment of Public Health, Division of Laboratories. Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of calcium and magnesium in epm.

0

Ψ

ANALYSES OF SURFACE WATER

the states Received and Child a to the state

	WATER
TABLE D-2	SURFACE
TA	S OF
	ANALYSES

	Analyzed byd			DWR		DWR		DWR		DWR		DWR		DWR		DWR		DWR	
1	Hordness bid - Coliform Analyzed os CaCO ₃ it WPN/mi by ^d Tatol N.C. <u>a</u> PPm pom b													-		বা			
Tur	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											_		97		1.4		48	
	Hordness as CaCO _S Total N.C. ppm pam													219				196	
	t add -													22 2				18 1	
otal	eolvad solids mod ni													376				296	
-			-		_										_				
	Other constituents			P0_4 = 0.83		PO_4 = 1.0		$PO_4 = 0,34$		P0_4 = 0.48		Fe = 7,8				P04 = 0.22			
	Silica (Si0 ₂)																6		
ltan	Baran Silica (B) (SiO2)		_									0.2	A. 206	0,1	_		TA. 22	0.2	
per mi	Fluc- ride (F)		A. 301		A. 302		303)		. 304)				EK (ST		. 227)		EEK (S		
parts per milian equivalents per milian	N: frate (NO ₃)	. 3)	EK (ST	1.2	EK (ST	1.3	STA.	1.8	Y (STA	1.3	CA. 234	0.00	DER CRE	$\frac{1.2}{0.02}$	sk (sta	$\frac{1.8}{0.03}$	LUER CB	<u>1.5</u> 0.02	
e quivo	Chia ride (CI)	ION (NC	EAN CRE		CCH CRE		E CREEN	_	HIGHWA		NTE (S1	30 0.85	F BOULL	$\frac{25}{0,70}$	ER CREI	$\frac{62}{1,75}$	OF BOU	18 0.51	
e i	Sul - fats (S04)	AL REG.	BOVE BI		ART G01		CKENZI		ENWOOD		AYAZ TV	<u>114</u> 2.37	LEAST 0	$\frac{125}{2,60}$	GLUOE 1		NORTH	$\frac{63}{1,31}$	
tuents	Bicar - S bonate (HCO3) (CENTRAL COASTAL REGION (NO. 3)	CREEK A		E LOCKH		BOVE MA		OLD GL		CREEK /	<u>171</u> 2.80	S NORTI	$\frac{14.9}{2.44}$	IVER AT		MILES	<u>180</u> 2.95	
Mineral constituents in	Carban - B: ars (CO ₃) (H	CENTRA	CULCH		EK ABOV		BEAN CREEK ABOVE MACKENZIE CREEK (STA. 303)	_	BEAN CREEK AT OLD CLENWOOD HIGHWAY (STA. 304)		ZAYANTE CREEK AT ZAYANTE (STA. 234)	0.00	UR MILE	0.00	SAN LORENZO RIVER AT BOULDER CREEK (STA. 227)		LVER SIJ	0.00	
Minera	Sadium Potas- Carban- (Na) (K) (CO3)	-	LOCKHART CULCH CREEK ABOVE BEAN CREEK (STA. 301)		BEAN CREEK ABOVE LOCKHART GULCH CREEK (STA. 302)		BEAN	—	BEAN C		2	28 0.07	BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK (STA. 206)	2.2	SAN LK		SAN LORENZO RIVER SIX MILES NORTH OF BOULDER CREEK (STA. 229)	<u>1.7</u> 0.04	
	e d B				В						_	34 1.48 0.	BEAR (28 1.22 0.			SAN LOI	20 1. 0.87 0.	
	-a E (1								-	-									
	Calcium Magne- (Ca) (Ma)		_									12 0.98		9 0.89				4 0.68	
												$\frac{67}{3,34}$		70				<u>65</u> <u>3.24</u>	
	000 DH			7.1		7,1		7.8		7.6		8.3		7.9		7.8		8.3	
Snert	at 25°			505		472		644		50.9		596		579		723		474	
	Dissalved axygen pom %Sat			57		75		102		86						94			
	Disso axy pom			6.0		7.9		10.7		10.0						10.8			
	Tamp in of			56		56		48		48						49			
	Discrorge Tamp Dissolved conductions pH in cfs in cF axygen (micromics pH in cfs 0 0/5 ct 1 250 0) ppm 0/5 ct 25			l est.		1.5 08t.		l eet.		3/4 cst.		5 eet.		4 1/2 est.		3 est.		2 1/2 est.	
	Date and time sampted P.S.T			12-10-64 0850		12-10-64 0815		12~10~64 0900		12-10-64 0945		11-11-64 0935		11-11-64 1000		12-9-64 1630		11-11-64 1040	

a Field determination.

.0

5

Laboratory analysis. Analysed by California Department of Public Newith, Division of Laboratories. Mineral analyses made by United States Gaological Survey, Water Resources Division (USGS) or California Department of Water Resources (DWR) as indicated. Sum of calcium and megnesium in apm. Ð 2

	by d			USCS													DWR
	Hordness bid - Coliform Analyzed es CoCO3 11 MPN/mi byd Totof N C = ppm ppm			6.2 U	-	6.2 62.	6.2 23.	5.0 23.	2		e	2			6		
	Col: fo				2.1 620.	62.			6.2 130.	620. 620.	2.3	6.2 62.	230.		6.2 21.		
Tur-	- 10			~	240	-	15	4	4	009	2	2	-	2	-		5
	Hardnese ee CoCO ₃ Toto! N C PPm PPm			22	39	30	31	3.8	34	21	38	29	27	21	18		
				135	108	150	107	134	101	99	139	136	140	139	135		
	t court			26	27	27	22	23	23	25	23	24	24	26	25		
Tote	aolive in pode										231				223		280
	Other constituente									00	AB = 0.00 ABS = 0.0 $PO_4 = 0.10$				AB = 0.00 ABS = 0.0 $PO_4 = 0.10$		$PO_4 = 1.2$
	Silico (SiO ₂)										25				25		
lion	Boron (B)		5)	0.1	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.2	0.0	0.0	0.0		
parts per milion valents per mili	Fluo- ride (F)		STA. 7													204)	
	Ni - trote (NO ₃)	3)	LTON (S								0.4				3.2	(STA.	2.0 0.03
parts pe equivalents	Chio- ride (CI) (N (NO.	EAR FEL	<u>28</u> 0.79	18.0.51	26 0.73	12 0.34	<u>15</u> 0.42	18 0.51	<u>8.7</u> 0.25	18 0.51	<u>18</u> 0.51	20	22 0.62	22 0.62	FELTON	29 0.82
ů,	Sul - C fota (SO4)	L REGIC	TREES N				10	10	10		57	10	,0	,0	35 0.73	TAST OF	
	Bicor S bonate (HCO ₃) ((CENTRAL COASTAL REGION (NO. 3)	AT BIG	<u>134</u> 2.20	84	146 2.39	91 1.49	<u>117</u> 1.92	1.90	53	1.95	1.88	<u>130</u> 2.13	144 2.30	2.34 0	Z MILE F	_
Minarol constituents	Carbon - Bi ate b (CO ₅) (H	CENTRAL	D RIVER	2 0.07	0.00	0.00	0.03	0.00	0.03	0.00	2 0.07	8 0.27	4 0.13	0.00	0.00	BEAN CREEK ONE MILE EAST OF FELTON (STA. 204)	_
Minero	Polas- Ca sum (K) ((-	SAN LORENZO RIVER AT BIG TREES NEAR FELTON (STA. 75)								0.04				<u>1.8</u> 0.05	BEAN C	
	Sodium (Na)		SAN	22 0.96	.18 0.78	20 1.13	1.4 0.61	18 0.78	18 0.78	<u>9.9</u> 0.43	0.83	20	20 0.87	22 0.96	21 1 0.91 0		
	Magne- So Sum (PMg)			2. 0 0	2.16	3.00	2.14 ^c	2.080	2.62°	1.28 ^c 0	0.58 0	2.72 ^e	2.80	2.78	7.3 0.60		
	Calcium M										44 2.20				42 2.10		
	1 010			8.2	/ . 8 / . 8	8.0 8.0	<u>, , 4</u> 8.3	0°.0	7.8 8.3	7.5	7. f. 8. 1.	8.2 8.6	7.0 8.5	7 <u>*9</u>	7 <u>,8</u> 8 <u>,1</u>		7.6
pacific	(micromhas at 25°C)				321	65.4	281	34.7	341	184	357	355	364	370	366		427
0	en (n /oSat			118	16	112	98	104	102	101	10n	112	6 (112	108	_	98
	Dissalved oxygen ppm %Sat			11.2	9.	1.)	11.0	12	10.9	15	1	4.01	4.4	1.01	6.9		10.8
				1.44	54		50 1	44	54 1	67	55	64 1	2.6	68	67		52 1
	Discharge Temp in cfs in OF			13	5	25	385	155	100	1,200	96	75	36	29	20		3 est.
	Date ond time sampled PST			0-6-64	-11-64	12-10-04 1145	1-12-05 1210	2+11-00 0730	3-5- 5 12 5	4-9-05 1215	5-0- 5	6-9-0.0	7-6-65 0845	8=5=65 0800	6000 5α-/-6		12-10-64 0745

Field determination.

Laboratory analysis. 9

Analyzed by Galifornia Department of Public Health, Division of Laboratories. Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or Galifornia Department of Water Resources (DMR) as indicated. Sum of colcium and magnesium in opm.

	pez			10												
	Anal V V			uses												
L.	bid - Caliform Analyzed			0.2 13.	2,400. 7,000.	23.	50. 23.	23. 62.	23. 23.	620. 1,300.	6.2 13.	62. 130.	230. 500.	62. 62.		
Tur-				2	10,000	17	30	17	17	1600	101	-	-	2		
	Hardnese to as CaCO ₃ total N C ppm ppm			92	1 62	114	81	85	16	30	63	91	87	93		
				292	182	326	199	231	257	102	200	277	284	296		
d	L L L L L L L L L L L L L L L L L L L			23	29	29	21	22	23	20	22	25	28	26		
Total	solved solids in ppm										421			499		
	Other constituents									00 0 =	ABS = 0.0 $PO_4 = 0.25$		00 0 e - v V	$PO_{4} = 0.15$		
	Silico (SiO ₂)										26			33		
lian	Boron (B)			0.1	0.1	0.1	0.0	0.1	0.1	0.2	0.1	0.1	0.0	0.1		
r milian per milian	Flua- ride (F)															
	Ni - trate (NO ₅)	5	. 76)								$\frac{1,1}{0,02}$			<u>1.8</u> 0.03		
garts pe equivalents	Chia- ride (CI)	ON (NO	EL (STA	58 1.64	$\frac{44}{1.24}$	85 2.40	<u>16</u> 0.45	24 0.68	32 0.90	9.8 0.28	30 0.85	$\frac{44}{1.24}$	<u>56</u> 1.58	68 1.92		
£	Sul - fote (SO4)	TAL REC	AT SUQU								<u>123</u> 2.56			$\frac{106}{2.21}$		
Mineral constituents	Bicar- banate (HCO ₅)	CENTRAL COASTAL REGION (NO. 3)	soquel CREEK AT SOQUEL (STA. 76)	$\frac{220}{3.61}$	126 2.07	<u>258</u> 4.23	<u>136</u> 2.23	<u>164</u> 2.69	<u>194</u> 3.18	<u>88</u> 1.44	<u>184</u> 3.02	<u>187</u> 3.06	<u>232</u> 3,80	$\frac{244}{4.00}$		
iral can	arban- are (CO3)	CENT	SUQUE	$\frac{12}{0.40}$	0*00	0,00	$\frac{4}{0.13}$	70,23	4 0.13	0.00	10 0.33	$\frac{20}{0.67}$	$\frac{4}{0.13}$	2 0.07	-	
Mine	Potas - C sium (K)		_								3.2 0.08			5 • 1 0 • 13		
	Sadium Potas- C (Na) sium			40	$\frac{35}{1,52}$	$\frac{62}{2.70}$	$\frac{24}{1.04}$	<u>30</u> 1.30	36	12 0.52	$\frac{34}{1.48}$	42 1.83	2.18	49 2.13		
	Magne- sium (Mg)			5.84 ^c	3.64 ^c	6.52 ^c	3,98 ^c	4.62 ^e	<u>5,14</u> e	2.04 ^C	20 1,61	9 <u>45.5</u> 0	9 c) * c)	23 1,88		
	Calcium (Ca)										$\frac{72}{3.59}$			<u>81</u> 4.04		
	I ala	2		8.5 8.5	$\frac{7.9}{8.1}$	8.2	8.5	7.8 8.5	8.0 8.3	7.5	$\frac{7.8}{8.6}$	8.7	8.3 8.4	8.4		
Caritic	(micramhas at 25°C)			735	547	929	486	569	634	270	623	06.9	/51	677		
	ved c en (r			142	98	104	101	102	95	93	101	106	113	84		
	Dissalved axygen ppm 0/oSaf	1		12.6	10.3	11.4	11.2	12.8	10.9	10.5	11.2	9.6	6.5	8.1		
-	Temp in aF	1		71	56	53	52	43	67	50	52	71	77	64		
	Dischorge Temp in cfs in of			1.4	10	0.8	120	43	23	850	30	14	6.9	2,8		
	Dote ond time sompled P.S.T			10-6-64 1340	11-11-54 1400	12-10~64 1015	1-12-65 1300	2-11-05 0645	3-5-65 0942	4=9=65 1310	5-0-65 0850	6-9-65 1500	7-9-65 1345	9-8-65 1101		

a Field determination.

Laboratory analysis. ۵

υ

Amalyzed by California Department of Public Health, Olvision of Laboratories. Mineral amalyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Mater Resources (DMR) as indicated. Ρ

HITAN 12 BURE D 2 HURE D 2 HURE

Sum of calcium and magnosium in epm. e

	WATER
ABLE D-2	DF SURFACE
11	ANALYSES OF

ber				10												
Anote				USCS												
Coliform	as cocos 14 MPN/mil by			23.	62. 230.	2.3	62. 62.	62. 62.	6.2 23.	62. 130.	23. 62.	230.	62. 620.		0.2	
Tur	A alo			m]~	1~	40	70	15	30	15	100	12	20	20	
	Totol N C pom ppm			4	0	70	35	162	272	230	158	163	122	105	85	
				430	430	967	160	372	574	510	432	534	530	528	520	
Per-	e pog			97	64	42	25	31	28	29	25	29	35	35	32	
Totel	solved in pom										689				877	
	Othar constituants									A = 0.00	$PO_4 = 0.10$			As = 0.01	ABS = 0.0 $PO_4 = 0.74$	
ł	Silica (SiO ₂)										18				25	
uo	Boron S (B) ((1.0	0.7	1.0	0.1	0.3	0.6	0*0	0.5	0*0	0.8	0.5	0.5	
s per million	Fluo- ride (F)		-													
equivalents	N1- 1rote (NO ₃)	0. 3)	(STA. 77)								$\frac{13}{0.21}$				$\frac{1.4}{0.02}$	
equivo	Chia- ride (Ci)	CENTRAL COASTAL RECION (NO. 3)	ENDEN (<u>175</u> 4.94	<u>126</u> 3.55	$\frac{182}{5.13}$	$\frac{22}{0.62}$	$\frac{77}{2.17}$	$\frac{113}{3.19}$	94 2.65	$\frac{68}{1.92}$	<u>106</u> 2.99	<u>134</u> 3.78	<u>108</u> 3.05	3.13	
c.	Sul - fote (SO ₄)	STAL RE	T CHITI								183				3.87	
tituen14	Bicar- banate (HCO ₃)	RAL COA	RIVER AT CHITTENDEN	4.96 8.13	<u>526</u> 8.62	<u>502</u> 8.23	$\frac{147}{2.41}$	3.87	368	<u>306</u> 5.02	<u>314</u> 5.15	436	466	<u>492</u> 8,06	5 <u>38</u> 8,82	
Mineral constituents	Carbon- ate (CO3)	CENT	PAJARO	$\frac{12}{0.40}$	4 0,13	0.00	30.10	0.33	0,00	18 0.60	10	$\frac{4}{0.13}$	$\frac{16}{0.53}$	12 0.40	0.00	
Mine	Polas- sum (K)									-	2,3 0,06				$\frac{4,4}{0,11}$	
	Sodium (Na)			1.40	149 6.48	$\frac{166}{7.22}$	$\frac{25}{1.09}$	78	102	95 4.13	66 2.87	$\frac{102}{4_{*}44}$	$\frac{129}{5.61}$	$\frac{129}{5.61}$	115	
	Magne. Sium (M9)			8.60	8.60 ^e	9.92 ^c	3,20 ^e	7.440	11.48 ^c	10,20°	55 4.50	10.68°	10.60 ^e	10,50 ^c	<u>58</u> 4.78	
	Calcium (Ca)										83				<u>115</u> 5.74	
	5 01-0			8.4	8.3 8.3	<u>8.0</u> 7.9	7.4 8.4	8.4	8.2 8.2	8.6	8.5 8.5	8.1	7 <u>.8</u> 8.5	8.4	8.0	
	Specific conductance (micromhos) at 25°C)			1.620	1,410	1,830	414	1,000	1,410	1.270	1,040	1,330	1,470	1,410	1,380	
-	ad Co 6 Sol Co	1		73		64	77	06	86	76	06	114	101	104	98	
	Dissolved oxygen ppm 0/oSof			7.0	8.2	6.7	8.5	10.2	8.6	5.6	8.7	11.1	9.6	8.9	0*6	
-			-	74	57	56				65	69	63	65	75	68	
	Discrorge Temp in cfs in OF			4	3.7	4.0	465	120	15	26	22	12	5.0	5.5	5.0	
	Dote and time sompled PST			10-7-64	11-11-64	12=11=64 1115	1-12-65 1615	2-10-65	3-4-65 1040	4-8-65	5-6-65 1222	6-8-65 1445	7-8-65 1000	8-4-65 1600	9-1-65 1230	

Field determination.

Laboratory analysis. e\$,a

Amalyzed by Californis Ospartment of Public Health, Division of Løboratorles. Hineral amalyses mode by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMR) as indicated. Sum of calcium and magnesium in epm.

P

φ

[2														 	
	Anolyzed 6y			0SCS												
	bid - Coliform			2.4	7,000.	23. 62.	62. 130.	50. 230.	23. 230.	620. 1,300.	230.	6.2 23.	9.5 14.	6.2 23.		
Tur-	14 v			-	10,000	30	70	6	100	006	60	5	1	2		
	Hardness as CoCO ₃ Total N C PPm PPm			107	1 17	14.7	66	66	27	40	33	10	136	164	 	
				568	364	608	460	510	406	444	440	504	484	584	 	
0	cant sod -			46	64	45	21	35	19	32	23	37	47	15		
Totel	solids n ppm	_									562			1,470		
	Other constituents									0000	AB = 0.00 ABS = 0.10		00 0	AB = 0.00 ABS = 0.00		
	Silico (SiO ₂)										12			=		
lion	Boron (B)		(17a)	2.0	1.9	1.8	0.8	1.2	0.5	0.9	0.7	1.5	1.5	2.2		
per mill	Fluc- ride (f)		N (SIA.													
1.6	NI - Trote (NO 5)	(; •;	STATIO								$\frac{1.6}{0.03}$			$\frac{3 \cdot 2}{0 \cdot 05}$		
ports p	Chio- ride (Ci)	N) NOI:	N FIRE	<u>158</u> 4.46	<u>152</u> /,.29	$\frac{146}{4 \cdot 12}$	<u>89</u> 2.51	86 2.43	$\frac{29}{0.82}$	54 1.52	30 0.85	<u>91</u> 2.57	<u>152</u> 4.29	212	 	
Ē	Sul - fote (SO ₄)	TAL REC	R VALLI								97 2.02			496 10, 33	 	
tituents	Bicar - bonate (HCO ₃)	CENTRAL COASTAL REGION (NO. 3)	NEAR BEAR VALLUY FIRE STATION (SIA. 77a)	510 8,36	370	<u>530</u> 8,69	<u>392</u> 6.42	463 7,59	<u>398</u> 6.52	44 <u>3</u> 7.26	$\frac{440}{7.21}$	<u>452</u> 7.41	<u>392</u> 6.42	7.28		
Mineral constituents	Corbon - 1 (CO ₃)	CENTI	RIVER	$\frac{26}{0.87}$	$\frac{12}{0.40}$	$\frac{16}{0.53}$	$\frac{12}{0.40}$	19 0.63	$\frac{31}{1.03}$	25 0.83	$\frac{28}{0.93}$	<u>32</u> 1.07	<u>16</u> 0.53	$\frac{33}{1.10}$		
Miner	Patas- C sum (K)	-	SAN BENITO RIVER								$\frac{2,9}{0,07}$			4+5 0,12	 	
	Sodium (No)	-	SAP	$\frac{224}{9_*74}$	298 12,96	230 10.00	55 2.39	<u>125</u> 5.44	$\frac{44}{1.91}$	94 <u>4</u>	$\frac{61}{2.65}$	$\frac{136}{5,92}$	<u>198</u> 8.61	<u>282</u> 12,27		
	Mogne: S sum (Mg)			11,36°	7.28"	12.16	9.20 ^c	10,20 ⁰	8,12 ^e	8,88	85 6.95	10,08 ^c	9.08	9.88	 	
	Calcium (Co)										37			36 1.80	 	
	I ala			8.5	8.4 8.4	$\frac{B_{+}4}{B_{+}6}$	$\frac{8,4}{8,7}$	8.5 8.5	8.2	8.5 8.5	8.7	$\frac{8,4}{8,6}$	$\frac{8,4}{8,6}$	8.2	 	
Consider	(micromhos of 25°C)			1,970	2,180	2,110	1,280	1,370	844	1,120	915	1,400	1,690	2,190		
	ved en %oSot			152	101	115	96	107	98	93	91	126	140	102		
	Dissofved oxygen ppm 0/oSot			12.1	10.0	11.1	ć.01	11,0	0*6	9.3	8,3	10.6	10.3	10.1		
	Temp In OF			67	58	6.0	50	55	65	57	65	73	86	58		
	Dischorge Temp ia cfs in 0F			0.1	0.8	0.5	15	5.0	63	10	53	0*9	0.3	0.2		
	Dote and time sompled P.S.T			10-7-64 1510	11=12-64 1140	12-9-64 1330	1=13=65 1200	2=9=65 1230	3=2=65 1530	4=8=55 1520	5-4-55 1430	6-8-65 1330	7-7-65 1430	9~10=05 1320		

a Field determination.

b Laboratory usalysia.
c Analyzed by California Uopartmunt of Poblic Health, Ulvision at Laboratories.
d Minaral analyzes made by United States Gaological Survey, Notor Resources Ulvision (USGS) or California Department of Mator Resources (UMR) os indicated.
a Sum of calcium and magnesium in spm.

	Anolyzed by				USGS												
	Hardness bid-Coliform ^C Analyzed as CaCO ₃ ^{ctv} MPN/mi by Tatai N C <u>a</u>				0.62	6.2	2.3	2.3	6.2 23.	23. 230.	.62	2.3 13.	620. 2,400.	13. 23.	230. 2,400.		
Tur-	Piq Piq	1.4			1-	6		20	00	00	5	<u>ا</u>	[⊸	-	<u>۳</u>		
	Hardness as CaCO ₃ Tatal N C	Edd			22	15	21	10	13	22	15	16	13	15	12		
	Hard as C	шdd			200	193	200	85	116	156	136	132	131	140	157	 	
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-			29	12	12	15	14	12	13	13	13	13	13	 	
Total	solved cent solids ium mun											172			202		
	Other canetituents										A 0	ABS = 0.11 PO4 = 0.05		- 0 0 - v	ABS = 0.0 $PD_{4} = 0.0^{\circ}$		
	Silica (SiO ₂)	1										17			10	 	_
uoi	Boron S (B)	1			0.1	0 2	0.1	0.0	0.4	0.0	0.1	0.0	0.0	0.0	0.1		
per million s per million	Flua- ride (F)	-		(96													
	N N trafe (NOL)	-	0. 3)	(STA.								<u>2.0</u> 0.03			3.8		
ports pe equivalents	Chlo- ride (CI)	-+	CION (N	TTIH N	7.1 0 20	<u>6.9</u>	<u>8.0</u> 0.23	$\frac{4.1}{0.12}$	$\frac{1.4}{0.04}$	$\frac{8.1}{0.23}$	<u>5.5</u> 0.16	<u>5.5</u> 0.16	<u>5.4</u> 0.15	<u>5.7</u> 0.16	<u>6.0</u> 0.17		
č	Sul - fate (SO.)	+	TAL REC	R MORGA								2 <u>3</u> 0.4 <u>8</u>	_		<u>25</u> 0.52	 	
ituents	Bicar - banate (HCO_)	- 1	CENTRAL COASTAL RECION (NO. 3)	UVAS CREEK NEAR MORGAN HILL (STA. 96)	3.56	<u>211</u> 3.46	3.31	92 1.51	<u>122</u> 2.00	<u>156</u> 2.56	<u>141</u> 2.31	<u>142</u> 2.33	<u>140</u> 2.29	143 2.34	<u>177</u> 2.90	 	
Mineral constituents	ote (0.0.)	160.0	CENTH	UVAS CRI	000	01.0	8 0.27	0.00	2 0.07	4 0.13	0.10	0.00	2 0.07	5 0.17	0.00	 	
Miner	Potas- Corban- sium ate (K) (CO.)	3										0.9 0.02			$\frac{1.7}{0.04}$	 	
	Sodium P	-			<u> 38</u> 1 65	<u>12</u> 0.52	12 0 52	, 0.30	<u>9.0</u> 0.39	10 0.44	9.1 0.40	0.39	<u>9.2</u> 0.40	9.6 0.42	0.48	 	
		ihwi			4 - 00 ^e	3.86°	4.00	1.70°	2.32°	3.12 ^c	2.72 ^c	1.04	2.62 ^c	2.80%	1.34	 	
	Calcium Magne. (Ca) (Ma)											32			36	 	
		م.1			8.2	7.8 8.4	8.4	7.4	7.8 8.5	8.4	7.8	8.0	7.6 8.3	<u>7.9</u> 8.5	<u>7.9</u>		
	(micromhos) at 25°C)				413	405	4.2%	195	253	327	292	289	282	296	340		
0	jen (m	0.201			169	102	103	76	105	126	126	104	94	112	116	 	
		£ dd	-		14.2	10.4	10 7	10.2	11.3	12.4	13.1	9.8	9.3	10.4	10 1		
-		1			75	58	56	53	53	61	56	79	60	99	72		
	Dischorge Temp in cfs in OF				0 5	0.5	1.5	e	6.0	m	2.5	9	ŝ	81	18		
	Date and time sampled p S T				10-7+64 1200	11-10-64 1700	12-10-64 1200	1+14-65 1100	2=10=65 1050	3-4-65 1215	4 <i>=</i> 7 <i>=</i> 65 1325	5-6-65 1400	6+8-65 1645	7 = 7 = 6 5 1645	9+8+65 1320		

Laboratory analysis. Field determination.

م

Analyzed by California Department of Fublic Health, Division of Laboratories.

Hinoral analyses made by United States Geological Survey, White Resources Olvision (USGS) or California Department of Water Resources (DWR) as indicated. Sum of calcium and magnesium in epm.

-155-

TABLE D-2 ANALYSES OF SURFACE WATER

. Free C. D. Market J. Mar

	Hordness bid - Coliform Anolyged os CoCO3 ity MPN/mi by Totor N C a ppm ppm b		Field	determi- nations	Field determi- nations	DWR	Field determi- nutions	Field determ1+ nations	Field determi- nations	Field determi- nations	Field determi- nations	Field determi- nations	Field determi-	DWR
0	PN/mi		64	Ρŭ	14 TD C		L D C	A D C		<u> </u>	<u>щ 10 с</u>	<u> </u>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	:
Tur-	bid - Col				105	230		10		10			<u> 60</u>	180
	Hordness os CoCO ₃ Totoi N C Ppm ppm					428								3 37
	Toto Ppm				635	201		2,900					500	14.3
P.	solved cent solved cod - in ppm					5								2 25
10	2 2 0 0 C					SRO								242
	Other constituents					ABS = 0.0			800 = 2.1					ABS = 1D
uo	Boron Silico (B) (SiD ₂)					0.2								0.2
er mill	Fluo-B rida (F)							-						
equivolants per million	Ni- trote (NO ₃)	(E •(. 264)			3.3					-			$\frac{3.1}{0.05}$
e quival	Chio- ride (C!)	CENTRAL COASTAL REGION (NO. 3)	SALINAS RIVER MILE 0.00 (STA. 264)		1,170	164		6,948		18,000		(CO2 *VIS) (//'I TATU YATU SWITTES	330	<u>19</u> 0.54
e l	Sul - fote (SO4)	TAL REC	MILE 0.			77					_	M1.LE		53
ituents	Bicor- bonote (HCO ₃)	AL COAS	RIVER			143						KIVEK		2.11
Minarol constituents	corbon - B ote b (CO ₃) (H	CENTR	SALINAS			0					_	VITTVS		0.00
Minard	Potos- Corbon- sum (K) (CO ₃)					5.1								2.8
	Sodium Po					101 5 10 0								22 27 2
	Mogns- So sum (Mg)					24 H								13
	Colcium Mo (Co)					41 17								<u>36</u> 1.80
	PH Cold			9.1	<u>ç.</u> 6	7.8		8.2	8.1	8.1	8.3	7*6	9.0	8.0 1
ecific	Discolvad conductonce axygen (micromhas cit 25°C) ppm 9/oSot			4,300	4,200	030 10	860 7	17,000 1	12,004	30,000 8	20, 011	2,400	2,050	397 8
Sp	Sof at			139	545	00	76	96	1. 1.	ر. د ددا	190 2	202	270	6
	Discolvad oxygen ppm 9/oSof			13.4	22.1	0	9.6	10.4	7.9	13.8	20.5	1.4.1	24.6	10.2
				64 1	70	j		54	53	57	24	65	6.9	
	Dischorge Tsmp in cfs in aF													
	Dote and time compled P.S.T			10-8-64 0627	10-8-64 1430	1-11-65	1720 1-12-65 0555	2-2-65 1700	2-3-65 0525	3-2-65 1820	3-3-65 0610	10-8-64 0550	10-8-64 1500	1-11-65 1620

a Field determination.

Laboratory analysis. ۵,

Analyzed by California Department of Public Health, Division of Laboratories. Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (OWR) as indicated. Ρ

Sum of calcium and magnesium in epm. U

ANALYSES OF SURFACE WATER

		F		-						:				pod	ports per million	million				┝		-		
				0	pacific					WiD	rol con	Minerol constituents in	ç	equival	equivalents par million	ar mith	uo		-	otol e.		Tur		
Dote and time sampled P.S.T	Dischorge Tamp in cfs in oF		Dissolved oxygen ppm 0%Sat	gen (m 9/0.5at	conductance (micromhos of 250C)	E ale	Colcium Mogna- (Co) (Mg)	Mogna- Sium (Mg)	Sodium (No)	Sodium Potos- Corbon- (No) (K) (CO3)	arbon- ate (CO ₃)	Bicor- bonote (HCO ₃)	Sul - fote (SO ₄)	Chio- ride (CI)	Ni - F trate (NO ₃)	F 1uo- 8 r:de (F)	Boron Silica (SiO ₂)	0 Other constituents		solved sod - solids ium ium	Hordness d - ae CoCO3 Totol N C PPM PPM	N C OS	Hardness bid- Coliform as CaCO ₃ ity MPN/mi Tatai N C a PPm ppm 5	Anolyged by
										-	CENJ	CENTRAL COASTAL RECION (NO. 3)	TAL REC	ION (NC	6.									
										SA	LINAS RJ	SALINAS RIVER MILE 1.70 (STA. 263) (Cont.)	5 1.70 (STA. 26	3) (Con	t.)								
1- 2-65 0450		6.5	9,8	50	438	1																		Fleid determi- natione
2-2-65 1630		56	7.4	71	5 +000	7.6								1,960							1,000	12		Field determi-
2-3-65 0500		55	6.6	62	1,600	7.6												BOD = 6.2						Field determi-
3-2-65		69	27.8	307	16,000	8.6																20		Field determi-
3-3-65 0526		55	25.7	242	24,000	8.2																		Field
																								defermi- nationa
											SALINAS	SALINAS RIVER MILE 3.50 (STA. 262)	(ILE 3.5	0 (STA.	262)									Field
0530		66	6.8	73	2,220	7.9																		determi- nations
10-8-64 1527		89	13.2	143	2,020	8.4								260							530	0.5		Field determi- nations
1-11-65 1650		50	10.3	91	362	7.6 8.(34	1.04	1/0.74	$\frac{2.7}{0.07}$	0.00	<u>125</u> 2.05	<u>50</u> 1.04	0.34	2.2 0.04		0.2	A8S = 0.0		221	21 137	35 180		DHR
1-12-65 0520		6 7	9.8	\$2	38.2	7.6																		Field determi-
2-2-65 1610		56	6.6	63	200	.5								62							315	28		Field Hetermi-
																	_			_				

a Field determination.

Laboratory analysis. ,д

Amalyzed by California Department of Public Health, Division of Laboratories. Muneral analyzes made by United States Geological Survey, Water Resources Division (USGS) or Californis Department of Water Resources (OMR) as indiceted.

Sum of calcium and magnesium in cpm.

ē

-0

	WATER	
TABLE D-2	SURFACE WATER	
TAB	OF	
	ANALYSES	

		by d		Etold.	determi- nations	Field determi- nations	Field determi- nationa	14	determi- nationa	Field determi- nationa	DWR	rield determi- nations	Field determi- nations	Field determi- nations	Field determ1- nations	Field determi- nations
_	U	Hardness bid - Coliform Anolyzed as CoCO3 ity MPN/mi by d Tatel N C a ppm ppm b		6		<u> </u>	<u>ш </u>	Li.	<u>5 6 6</u>	4, 7 E		<u>4 0 6</u>	Li, Q Li	4 19 C	494	4 9 4
	Tur-	- A				30				20	09		52		65	
											9 644					
		Harda es Ca Tatel Ppm				1,750				750	1,210		1,140		850	
	Per-	solved solved solved solds in ppm ium									50					
-	Tetel	evios pilos pilos									3,190					
		Other constituents			80D = 4.7						A8S = 0.0					
	ł	Silice (SiO ₂)														
	lian	Beren Silice (B) (SiO ₂)									1.4					
milian	ter mi	Fluc- ride (F)		(· .)				246)								
ports per militon	ents p	Nt- trate (NO ₃)	. 3)	(Con				(STA.			119 1.92					
por	equivalents per million	Chia- ride (CI)	ON (NO	A. 262		3,620		RIVER		290	438 12.36		422		368	
	' }	Sul - C fate (SO ₄)	CENTRAL COASTAL REGION (NO. 3)	SALINAS RIVER MILE 3.50 (STA. 262) (Cont.)		<u></u>		BLANCO DRAIN INTO SALINAS RIVER (STA. 246)		~	1,180 4 24.57 12		4			
	ents		COAST	MILE 3.				INTO SA								
	GUSTITU	- Bicar- benate (HCO ₃)	ENTRAL	RIVER ?				DRAIN]			690					
	Mineral canstituents in	Carban - ate (CO ₃)	0	TINAS				LANCO 1			0.00					
	1	Patas- sium (K)		SA				00			<u>5.5</u> 0.14					
		Sedium (Na)									551 23.97					
		Magne- sium (Mg)									$\frac{197}{16.20}$					
		Calcium (Ca)									7.98					
F		ato H			7.5	8.0	8.0		7.8	8.0	7.8	7.9	8. I	8,1	8.0	8.5
	Specific	(micramhas at 25°C)			760	8,500	4,000		3,000	2,750	4,260	3,400	3,750	3,800	3,100	2,950
		gen (i %oSet			63	137	92		58	92	72	73	95	85	117	86
		Dissalved cxygen ppm %So			6.6	13.5	6'6		5.8	6.6	7.9	8.1	10.0	9.3	11.7	9.6
		Ten n oF			56	61	54	_	60	66	52	51	56	54	09	51
		Discharge Temp in cfs in OF								>3 est.	≫6 est.	>6 est.	>5 est.	.√s est.	4 est.	24 est.
		and time sampled P S.T			2-3-65 0435	3-2-65 1740	3-3-65 0547		10-8-64 0445	10-8-64 1605	1-11-65 1230	1-12-65 0420	2-2-65 1525	2-3-65 0350	3-2-65 1630	3-3-65 0455

a Field determination.

Laboratory analysia. م

c Analyzed by California Peparement of Bublic Health, Division of Laboratoriea. d Mineral analyzes made by United States Geslogical Survey, Water Resourcea Division (USGS) of California Department of Water Resourcea (DWR) as indicated. e Sum of calcium and magnesium in epm.

ę	mi Anolyzed mi by		Field	deterni- netions	Field determi- netions	Piold	determi- netione	Field determ1- netions	Field determi- netions	Field determi~	Field	determi- netions	Field determi- netions	DHR	Field determi- netions	
	bid - Coliform ity MPN/ml															
Tur	AL PIC				18		28		20				28	35 180		
	Hordness os CoCO ₃ Total N C PPm PPm				420		305		077				00 5	139 3		
	sad - 0 1um To	-			4		ň		4				7	21 1		
otel e	solved solved solids in ppm													218		
1	Other constituents in							B00 = 7.0						A8S = 0.0		
	n Silico (SiO ₂)													-		
lion	Boron (B)													0.2		
ports par million valents par mill	Fluo- ride (F)		-								-					
ports par million squivalents par million	Ni- trate (NO ₃)	0.3)	A. 261							0.95	A. 260			2.8 0.04		
s quival	Chio- rids (CI)	ION (N	65 (ST.		230		90	136		13 (STA			240	13 0.37		
e e	Sul - C fote (SO4)	TAL REC	MILE 4.								WILE 7.			50 1.04		
	Bicor - S bonats f (HCO ₃) (S	CENTRAL COASTAL RECION (NO. 3)	RIVER								RIVER			127 2.08		
Minero! constituents	001 - Bit (H(CENTRA	SALINAS RIVER MILE 4.65 (STA. 261)								SALINAS RIVER MILE 7.13 (STA. 260)			0.00		
Minerol	Potos- Corbon- E sium ofs (CO3) ((S								03					
	Poto stur (X)													14 2.6 0.07		
	Sodium (No)													$\frac{17}{0.74}$		
	Magns- sum (Mg)													$\frac{12}{1,03}$		
	Calcium (Co)					ater.								<u>35</u> 1.75		
	H old			7.5	7.8	high water.	7.6	7.7	7.9	7+7		7.6	7.6	7.6 8.0	7.7	
Specific	(micromhos PH			1,875	1,700	e due to	665	705	1,100	1,230		1,850	1,700	370	375	
	gen %oSo			10	149	inaccessible	66	65	66	33		7	27	93	88	
	Dissol 0ayg ppm			1.0	13.3	inacc	6.9	6.8	9.7	3.6		0.7	2.4	10.5	10.0	
	a Tamp in oF			63	70	point	56	56	62	53		97	70	50	50	
	Dischorgs Tamp in cfs in OF					Sampling point										
	Dots and time P.S.T			10-8-64 0505	10-8-64 1625	1-11-65	2-2-65 1545	2~3 ~ 65 0410	3-2-65 1648	3-3-65 0510		10-8-64 0410	10-8-64 1700	1-11-65 1530	1-12-65 0355	

a Field determination.

Leborstory snalysis.

Amalysed by Californie Department of Public Health, Division of Laboratories. Minerel samiyses made by United States Geological Survey, Water Resources Division (USCS) or California Department of Mater Resources (DMR) as indicated.

Sum of celcium and magnesium in epm.

	Anolyged by		Field	determi- nations	Field determ1- notions	Field determi- nations	Field determi- notions	Pto 1d	determi- notions	Field determi- nstions	DWR	Field determi- notions	Field determi- nations	Field determi- nations	
	bid - Colutorm														
Tur-			ĉ	37		~				22	175		32		
	Hordness os CoCO3 total N.C. pom ppm			280		430				410	142 36		360		
	tent and -										21				
Totoi	des- solved sod - in opm										233				
	Other constituents				BOD = 9.0						ABS = 0.0			B00 = 7.6	
1	Boron Silico (B) (SiO ₂)		_												
ports per million equivolents per million	- 9 (B)		(•)u	-	-							0.2			
ports per million volents per mill	Fiuo- ride (F)		0) (Coi					(6			17				
volents p	Ni- trote (ND ₃)	(NO. 3)				TA. 25			$\frac{2.4}{0.04}$						
edni	Chlo- ride (CI)	I (7.13 (S	20		T/0		1,51 (S		250	10 0.37		58		
Ē	Sul - fota (SO ₄)	STAL RE	MILE .					MILE			53				
fituents	Bicor - bonote (HCO ₃)	AL COA	CENTRAL COASTAL RECION (NO. 3) LLINAS RIVER MILE 7.13 (STA. 260 1000 1000 1000 1000 1000 1000 1000 10					RIVER			$\frac{129}{2.11}$				
Mineral constituents	Potos- Corbon - (sum 016 (K) (CO _S) (CENTR	SALINAS RIVER MILE 7.13 (STA. 260) (Cont.)					SALINAS RIVER MILE 9.51 (STA. 259)			0.00				
Min	Potos- sium (K)										2.5				
	Sodium (No)										$\frac{18}{0.78}$				
	(pm) sum sum										1.04				
	Colcium Mogne- (Co) (Mg)										36 1.80				
	H ata			<u>1.5</u>	7.6	7.7	7.8		7.6	<u>č./</u>	7.6	7.6	7.6	<u>c.</u>	
Snarific	conductance (micromhos of 25°C)			650	600	1,150	1,210	_	1,700	1,600	376	376	660	710	
	ved en %oSot			66	60	63	33		-	en	56	16	6 /	62	
	Dissolved oxygen ppm 0%Sof			6.9	6.4	6.0	9.0		0.1	0.3	10.6	10.3	6.9	6.6	
	Tamp in oF			56	55	66	54		67	68	50	50	57	55	
	Dischorge Tamp in cfs in OF														
	Dote ond time sompled P.S.T			2-2-65 1500	2-3-65 0330	3 - 2 - 65 1605	3-3-65 0435		10-8-64 0345	10-8-64 1730	1-11-65 1505	1-12-65 0330	2-2-65 1425	2-3-65 0300	

a Field determination.

Laboratory analysis. a,

Analyzed by California Deportment of Public Health, Division of Loboretoriea. Hinarol analyses modo by United Statos Goological Survey, Water Resources Division (USGS) or California Department of Water Resources (DWR) as indicated. Sum of colcium and magnesium in epm. Þ

ANALY A S OF SUMACE WATER

c

	Anolyzed by d		Field determi- nations	Field determi- nations	Fluld	determi- nations	Field determi- nations	DMR.	determi- nations	Ffeld determi- nations	Field determi-	Fie d Etc d determi-	Field deterni- nationa	
	Hordness bid - Coliform as CoCO ₃ 117 MPN/mi Totol N C <u>3</u> Ppm ppm <u>5</u>													
Tur-	ela - ela		00				12	150		32		13		
	Hordness as CoCO ₃ Totol N C ppm ppm		420				500	141 36		275		470		
	- mn-							21						
Toteí	Bolved sod - solids -um							231						
	Other constituents							ABS = 1, 11			800 = 3.			
1.0	Boron Silica (B) (SiO ₂)							1-0						
valents per million	Fluo- ride (F) Bor													
		3)			305)			<u>1.8</u> 0.03						
equivalents	10 - Ni - de trote (NO ₃)	CENTRAL COASTAL REGION (NO. 3)	170		SALINAS RIVER MILE 12.46 (STA. 305)		<u>471</u>	13 1. 0.37 0.		⁶¹⁸		120		
1	Sul - Chlo- fate ride (SO ₄) (Cl)	AL REGIO			ILE 12.4	_	-1	52 1.08		~				
ients ir		COAST			NIVER M									
constitu	n- Bicor- bonote (HCD3)	T CENTRAI			LINAS I			0 2.10						
Minarol constituents in	Corbo 018 (CO ₃	0 A 1 7 M	NTHUC .		SA			0.00						
Σ	Sadium Potos- Corbon- (No) (K) (CO3)							2.5						
	Sodium (No)							<u>18</u> 0.78						
	Colcium Mogne- (Co) Mogne- (Mg)							$\frac{12}{1.02}$						
	Colcium (Co)							36 1.80						
	I HO		3	<u>ç./</u>		7.4	7.6	7.8	7.8	7 - 8	/.8	7.6	7.6	
Spacific	(micromhos of 25°C)		1 » 2 1 r.	1,190		1,680	1,700	373	383	610	670	980	1,030	
	gen (i		23	16	-	- 11	70	98	94	06	84	09	38	
	Dissolved oxygen ppm 0/0Sot		2.3	-		1.0	1.9	10.9	10.8	4.6	8.9	5.9	4.0	
	du di a di		Q	56		65	60	50	6.5	56	54	19	20	
	Dischorge Temp in cfs in oF					4.0	3.8	1,490	1,230	136	13.2	8.0	7.0	
	Dote ond time P.S.T		3+2-65 1530	3-3-65 0407		10-8-64 0300	10-8-64 1800	1-11-65 1420	1-12-65 0300	2-2-65 1355	2-3-65 0240	3-2-65 1500	3-3-65 0240	

ANALYSES OF SURFACE WATER TABLE D-2

A Des a Desta de la desta dest

o Field determination.

Laboratory analysis. م

Amalyzed by California Department of Public Health, Division of Laboratories. Mineral emalyaes made by United States Geological Survey, Mater Resources Division (USGS) or Californis Department of Water Resources (DWR) as indicated.

Sum of calcium and magnesium in epm. c

ANALYSES OF SURFACE WATER TABLE D-2

Hardness Tur-	solved cent routes solids ium Total NC in ppm ppm ppm			0 7,000. USGS	2,400.	2,400.	230.	230 . 620,	23 . 23.	230. 230.	2.					
Hardness Tur-	solved solv more solved			-		230.	230 . 230.	230 . 620.	23.	30.	0.7	<u>.</u> .				
Per- Hordness	solved cent routes solids ium Total NC in ppm ppm ppm			-	_\^_					61.61	62. 230.	620. 2,400.	130.		230. 620.	
Per- Hordness	solved cent routes solids ium Total NC in ppm ppm ppm			0		20	160	10	-	20	20	-	13	2	5	
	solved solved - and - and - mul mdd ni				0	0	36	66	58	0	20	0	0	93	19	
er Per-	solved solids mgg ni			490	480	576	141	304	472	514	514	530	310	246	299	
24			_	38	32	34	21	28	31	34	30	36	64	55	32	
,ē ā	ente						231				882				577	
	Other constituents									10 0 -	$PO_4 = 0.01$ A8S = 1.1 PO_4 = 3.25		ABS = 1.7	Å* = 0 01	$PO_4 = 8.9$	
	(Silica (SiO ₂)										35				25	
lion	Baran (B)			0.4	0.5	0.4	0.1	0.2	0.7	0.3	0.3	0.3	0.8	0.4	0.4	
per million	Fluo- ride (F)		. 43)													
	NI- trote (NO3)	NO. 3)	LS (STA				<u>1.8</u> 0.03				13 0.21				<u>38</u> 0.61	
ports pe equivalents	Chlo- ride (C!)	CION (SPRECKE	<u>162</u> 4.57	<u>124</u> 3.50	<u>162</u> 4.57	$\frac{13}{0.37}$	48 1.35	$\frac{112}{3.16}$	<u>132</u> 3.72	$\frac{131}{3.70}$	<u>150</u> 4.23	<u>150</u> 4.23	<u>148</u> 4.18	<u>80</u> 2.26	
Ē	Sul - fate (SO4)	ASTAL R	R NEAR				<u>52</u> 1.08				<u>69</u> 1.44				<u>51</u> 1.06	
1:tuents	Brcar- bonate (HCO ₃)	CENTRAL COASTAL REGION (NO. 3)	SALINAS RIVER NEAR SPRECKELS (STA. 43)	604 9.90	<u>626</u> 10.26	752	<u>128</u> 2.10	246 4.03	<u>505</u> 8.28	642 10.52	<u>546</u> 8.95	<u>546</u> 8.95	400	<u>3.05</u>	342	
Minarol constituents in	Carbon- 610 (CO ₃) (CEN	SALIN	0.00	0.00	0.00	0.00	2 0.07	0.00	0.00	<u>28</u> 0.93	49 <u>1.63</u>	0.00	0.00	0.00	
Mine	Potas- C sum (K)						<u>2.5</u> 0.06				22 0.56				<u>23</u> 0.59	
	Sodium P (Na)			<u>141</u> 6.18	<u>106</u> 4.61	136 5.92	18 0.78	54 2.35	<u>99</u> 4.31	<u>122</u> 5.31	<u>106</u> 4.61	<u>138</u> 6.00	<u>135</u> 5.87	<u>136</u> 5.92	<u>70</u> <u>3.04</u>	
	Magne- Sum Sum			9.80 ⁶	9.60 ^e	11.52 ^e	$\frac{12}{1.02}$	6.08 ^e	9.44 c	10.28e	45	10.60	6.20 ^e	4.92 ^e	22	
	Calcium (Ca)						36				<u>131</u> 6.54				<u>83</u> 4.14	
				$\frac{7.4}{8.2}$	7.6	<u>7.6</u> 8.0	7.8	8.3	7.7	7.3 8.0	<u>7.4</u> 8.5	<u>7.4</u> 8.7	7.2	7.6	7.9	
pecific	(micromhos pH at 25°C) at 25°C)			1,660	1,410	1 "860	373	779	1,320	1 ,480	1,370	1,530	1,310	1,130	789	
				34	28	0	97	85	51	63	58	46	45	56	48	
	Disselved asygen ppm %Sc			3.1	2.8	0.0	10.9	6.9	5.8	6.4	5.7	4.2	4.8	5.6	5.2	
	i official official			68	59	59	51	00 7	50	59	62	69	55	61	53	
	Dischorge Temp in cfs in 9F			3.5	8.3	5.5	1,500	98	5.0	14	9.0	6.2	2.5	1.5	2.0	
	and time sampled P.S.T.			10-6-64 1600	11-11-64 1600	12-11-64 1000	1-11-65 1420	2-10-65 0850	3-4-65 0915	4-9-65 1540	5-6-65 1030	6-9-65 1400	7-8-65 0400	8-4-65 1400	9-1-65 0700	

s Field determination.

Laborstory analysis.

Amalyzed by California Department of Public Health, Division of Laboratories. Minerel onalyzes mode by United States Geological Survey, Water Resources Division (USCS) or California Department of Mater Resources (DWR) as indicated.

Sum of calcium and magnesium in epm. 5

ANALYSES OF SURFACE WATER

Γ		Anolyzed by d			DWR	Field determi- nationa	Field determi- nations	Field determi- nstions	Field determi- nationa	Field determi- nations		uscs					
	U	MPN/mi				L D C	496	84 10 d	14 19 d	0 0 v4		0.62	2.3	.23	230.	13.	
F		- Pig			140		25		5			1-	5	-	30	1	
		Hordness as CoCO ₃ Totol N.C. ppm ppm			39							26	4.5	75	45	60	
					148		280		370			150	212	269	189	232	
	Per-	- Leos			20							17	23	27	22	25	
	Total	solios rogen			242												
		Other constituente			ABS = 0.0			800 = 1.1									
	ľ	Silice (SiO2)															
	LON	Baron (B)			0.1							0.1	0.1	0.2	0.0	0.2	
porte par million	equivalants par million	Fluo- ride (F)		~													
orte par	slants	NI- trota (NO ₃)	NO. 3)	CA. 306	2.2						A. 43c)						
٩	equiv	Chio- ride (CI)	BCION (5.67 (S	$\frac{13}{0.37}$		44		70		ILEY (ST	<u>9.0</u> 0.25	20 0.56	<u>33</u> 0.93	<u>18</u> 0.51	$\frac{26}{0.73}$	
	=	Sul - fate (SO ₄)	ASTAL RU	MILE 2	<u>56</u> 1.16						EAR BRAI						
	1000110	Bicor- bonote (HCO ₃)	CENTRAL COASTAL REGION (NO. 3)	SALINAS RIVER MILE 25.67 (STA. 306)	<u>133</u> 2.18						RIVER N	$\frac{151}{2.47}$	$\frac{192}{3.15}$	<u>224</u> <u>3.67</u>	<u>169</u> 2.77	<u>198</u> 3.25	
	MINBEDI CONSTITUENTE	Carbon- ate (CO3)	CEN	SALIN	0.00						SALINAS RIVER NEAR BRADLEY (STA. 43c)	0.00	6 0.20	6 0.20	3 0.10	6 0.20	
		Potos- sum (K)			2.3												
		Sodium (No)			<u>18</u> 0.78							14	<u>30</u> 1.30	45 1.96	25 1.09	35	
		Mogne- eum (Mg)			$\frac{13}{1.11}$							<u>3.00</u> e	4.24 ^e	5,38 ^e	3.78 ^e	4.64 ^e	
		Colcium (Co)			$\frac{37}{1.85}$												
		H ala			7.8 8.0	7.8	8.3	8.3	8.3	8.3		<u>8.2</u> 8.1	8.2	8.5	$\frac{7.0}{8.4}$	8.2	
	Specific	conductance PH (micromhoe PH of 25°C)			388	388	585	690	720	1,090		340	5 23	695	797	582	
		9/0 Sof			96	94	105	67	126	06		102	96	118	101	95	
		Diesolved asygen ppm %Sof			10.9	10.7	11.0	10.3	11.5	10.0		8.6	8.5	11.6	10.8	10.3	
					50	20	95		89			74	70	60	53	52 1	-
		Dischorge Tamp in cfa in oF										300	50	13.4	600	116	
		end time P.S.T.			1-11-65 1330	1-12-65 0220	2-2-65 1300	2-3-65 0200	3-2-65 1400	3-3-65 0242		10-8-64 1600	11-12-64 1330	12=9=64 1110	1-13-65 1410	2-9-65 1035	

a Field determination. b Laboratory analysis.

υ -0 e

Analyzed by California Dapartment of Public Health, Division of Laboratorizea. Micorel analyzes ande by United States Geological Survey, Water Resources Division (USGS) or California Gepartment of Water Resources (DMR) as indicated. Sum of caliform and magnesium in epm.

vecan (1981) on Linit atout

ANALYSES OF SURFACE WATER TABLE D-2

	yz,ad				sa sa											SS		
	by d				USGS											USGS		
	bid - Coliform				.62 2.3	50. 62.	23. 23.	62. 62.	13. 62.		6.2 13.					62. 130.	2.3 13.	5. 13.
Tur-	일 ~ ~	1.0			ľ	20	9	15	10	1-	12					15	t-	-
	N C O 3	E dd			71	62	55	20	22	21	17					30	39	43
		bpm			257	237	242	127	124	123	127					140	162	176
9	ten contraction	- -			27	26	26	16	16	15	117					14	14	15
Tota	soived solived in ppm						409				175							
	Other constituents					00 0	ABS = 0.00 ABS = 0.0 $PO_4 = 0.20$			10 0 I	ABS = 0.01 $PO_4 = 0.10$							
	Silica (SiO ₂)						28				<u>12</u>							
lion	Boron (B)			~	0.3	0.2	0.1	0.0	0.0	0.1	0.2					0.0	0.1	0.2
ports per millian equivalents per million	Fluo- ride (F)		_	(Cont.								(984)						
orts pe cients	Ni - trate	(SUN)	(NO. 3)	4. 43c)			$\frac{1.0}{0.02}$				$\frac{1.1}{0.02}$	C (STA.						
Ainbe	Chio-	Ē	CENTRAL COASTAL REGION (NO. 3)	LEY (STI	<u>33</u> 0.93	29 0.82	<u>28</u> 0.79	$\frac{8.1}{0.23}$	<u>7.0</u> 0.20	<u>6.9</u> 0.19	$\frac{7.2}{0.20}$	SAN ANTONIO RIVER NEAR PLEYTO (STA. 43d)				$\frac{5.7}{0.16}$	<u>6.6</u> 0.19	<u>8.5</u> 0.24
Ē	Sul - tote		ASTAL 1	UR BRAD			99 2.06				<u>35</u> 0.73	/ER NEA						
stituent	Bicar - bonate	(FCO3)	I NTRAL CO	IVER NEA	$\frac{207}{3.39}$	$\frac{202}{3.31}$	$\frac{220}{3.61}$	$\frac{124}{2.03}$	$\frac{122}{2.00}$	$\frac{124}{2.03}$	$\frac{134}{2.20}$	ONIO RI				$\frac{130}{2.13}$	<u>150</u> 2.46	<u>154</u> 2.52
Mineral constituents	Carban - ats	(603)	CE	SALINAS RIVER NEAR BRADLEY (STA. 43c) (Cont.)	10 0.33	6 0.20	$\frac{4}{0.13}$	<u>3</u> 0.10	$\frac{1}{0,03}$	0.00	0.00	SAN ANT				$\frac{2}{0.07}$	0.00	4 0.13
чW	Potas-	1	-	SA			<u>1.8</u> 0.05				$\frac{1.3}{0.03}$							
	Sodium (No)				4.3	<u>38</u> 1.65	<u>39</u> 1.70	$\frac{11}{0.48}$	$\frac{11}{0.48}$	<u>10</u> 0.44	12 0.52					$\frac{10}{0.44}$	$\frac{12}{0,52}$	$\frac{14}{0.61}$
	Mogne-	(6W)			5.14e	4.74e	$\frac{21}{1.75}$	2.54 ^e	2.48 ^e	2.46 ^e	1.19					2.80 ^e	3.24 ^e	3.52 ^e
	Calcium (Ca)						62 3.09				$\frac{27}{1.35}$							
	H,	-10			<u>8.2</u> 8.6	<u>8.2</u> 8.4	<u>8.1</u> 8.4	<u>8.2</u> 8.3	7.8	<u>8.0</u> 8.2	8.3					7.9	7.8	8.5
and in	conductance (micromhos				652	599	629	297	280	282	297					310	364	392
		om %Sot			106	97	109	113	114	104					_	98	100	87
	- I	Ead			9.6	10.0	10.0	10.4	10.4	10.0						10.0	11.0	8.0
	a Temp in oF				67	56	66	66	67	62	65					57	51	66
	Dischorge Temp in cfs in of				66	350	80	415	463	610	465		Ory	Dry	0ry	240	62	38
	Dats ond time sompled	P.S.F.			3~2~65 1300	4 - 8-65 1300	5-4-65 1115	6-9-65 1140	7-9-65 1100	8=4=65 0645	9-10-65 0850		10-8-64 1630	11-12-64 1410	12-9-64 1110	1-13-65 1450	2=9=65 0950	3-2-65 1145

a Field determination.

b Laboratory analysis.
 c Analysed by California Ospartment of Public Health, Division of Laboratories.
 d Mineral analyses made by United States Geological Survey, Water Resources Olvision (USOS) or California Department of Water Resources (DWR) as indicated.
 e Sum of calcium and magnesium in spm.

	WATER
FABLE D-2	SURFACE
ΤA	SES OF
	ANALY

d Mittarai attaitation measure o Sum of taititum wrid meg

	9																		
	Analyzed	by d			USGS						USGS								
	Coliform	MPN/mi			62. 230.	230. 500. 6.2	230.	62. 62.	620.		21. 23.	6.2	6.2 6.2	23.	13.	62.	.23		
	bid - C	₹ 91.0			12		1-	1~	1		1-	10	4	101		20	5		
	:	N C 03			41	42	39	35	36		27	22	21	24		24	24		
	Hardr	as CoCO ₃ Tatol N C ppm ppm			162	174	183	172	144		140	155	165	170		168	169		
	Par-	- po			14	14	17	33	23		14	12	13	1		13	12		
	1010	pevice apide mdd ui	_			257			227						_				_
		Other constituents			Åe = 0.00	$PO_4 = 0.10$		As = 0.00	ABS = 0.0 $PO_4 = 0.05$										
		Silica (SiO ₂)				28			27										
	uai	Boron (B)		~	0.1	0.0	0.0	0.0	0.0		0.0	0.0	0.9	0.0		0.1	0.1		
parts per million	ar ar	Fluar ride (F)	-	(Cont.						(43b)									
'ts per	ents p	NI- Irats (NO ₃)	0. 3)	(b£4.)		$\frac{0.7}{0.01}$			0.01	EL (STA									
par	equivalents par milion	Chia- ride (Ci)	CENTRAL COASTAL RECION (NO. 3)	TO (STA	<u>6.7</u> 0.19	7.2 0.20	10 0.28	13 0.37	13 0.37	SAN MIGUEL (STA. 43b)	<u>6.8</u> 0.19	7.5	8.6	8.1	0.23	<u>9.0</u> 0.25	7.8		
	=	Sul - fate (SO4)	I STAL RE	AR PLEY		<u>59</u> 1.23			<u>59</u> 1.23	NEAR									
	CONSTITUENTS	Bicar- bonate (HCO ₃) (LAL COAS	LVER NEJ	<u>142</u> 2,33	2.51	<u>167</u> 2.74	<u>157</u> 2.57	1.80	RIVER	<u>138</u> 2.26	<u>162</u>	166	166	2.72	2.88	<u>169</u> 2.77		
	CONSTI	Carban-Bi ate (CO ₃) (H	CENTR	SAN ANTONIO RIVER NEAR PLEYTO (STA. 434) (Cont.)	0.10	4 0.13	4 0.13	<u>5</u> 0.17	<u>11</u> 0.37	NACIMIENTO RIVER	0.00	0000	5	9	0.20	0.00	4 0.13		
	Minsrol	Patos- Car sium (K) (C	ł	SAN AN		0.03			2.8	NAC									
		Sedium Pat	-		12 0.52	13 0.57 0	<u>17</u> 0.74	<u>39</u> 1.70	20 0.87 0		10	10	11	11	0.48	0.52	11 0.48		
		Magne- Soc s:um (Ng)			3.24°	9.0 0.74 0	3.66	3.44	14 1.13		2.80 ^e			3.30	3.40	3.36	3.38		
		Colcium Mas (Ca) (N	-			55 <u>9</u> 2.74 0	16	16	35 1.75	_									
$\left \right $	_		-		8.0		8.2 8.4	8.5	7.5 8.6		8.2	8.1	7.4	8.5	8.6	7.8 8.0	7.8		
-		5 a C)			361			411	365	_			855	358	361	361			
-		conductonce (micromhas at 25°C)												37 3	74	68			
		Dissolved asygen ppm %Sat	-		080	-			.0 116				10.01 105	3.9	7.6 7	9.8			
					7 01	G	10		10.0										
		in of	-		Ĵ	52 62	76		2 72				63	54	57	t. 51		E d	ed
		Discharge Temp in cfs in OF			G	00	1	1.2	0.2			CIC		5	4	l est.	0.	Ponded	Ponded
		Date and time sampled P.S.T.			4-8-65	1200 5-4-65 1010	6-9-65 1930	7-9-65	9-10-65 0658		10-8-64	11-12-64	1530 17-9-64	0920	1-13-65 1530	2-9-65	3-2-65 1030	4-8-65 1100	5-4-65 0935

a Field determination.

Laboratory analysis. م

Analyzed by Califorcia Department of Public Mealth, Division of Laboratoriea. Mineral analyzes ande by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resourcea (DWR) as indicated. Sum of calcium and magnesium io epm.

0

ANALYSES OF SURFACE WATER TABLE D-2

	Minerol constituents in	Minerol	°	DNST:TUENTS	ſ	equival	equivalents per million	oillie			Total Per	Hord	<u><u> </u></u>	- Joliform	Andward
Colcium M (Co)	Magne- Sium ((Mg)	Sodium Potos- (No) (K)	s- Corbon- (CO3)	- Bicor - bonote (HCO ₃)	Sui - (fota (SO4)	Chio- rida (CI)	Ni- Fli trote ri (NO ₃) (J	Fluo- Bo ride (E (F)	Boran Silica (B) (SiO ₂)	C Other constituents	solved sod - solids tum	Totol N.C.	es CoCO3 epem per	by WPN/mi by	p Alana A p A
			-	CENTRAL COASTAL REGION (NO. 3)	ASTAL REC	CION (N	0.3)	-							
		N	CIMIENTO	NACIMIENTO RIVER NEAR SAN MIGUEL (STA. 43b) (Cont.)	SAN MIC	CUEL (S	IA. 43b)	(Cant.							
2.34		<u>8.1</u> 0.35	0.00	$\frac{114}{1.87}$	040	<u>5.5</u> 0.16			0.0		13	117	24	5 62.	USGS
2.36 ^e		<u>8.6</u> 0.37	2 0.07	1.79	410	<u>5.9</u> 0.17		0	0.0	00 00	14	118	25	23. 620.	
39 <u>5.5</u> 1.95 0.45		8.4 <u>1.1</u> 0.37 0.03	<u>0.00</u>	$\frac{123}{2.02}$	29	<u>5.6</u> 0.16	<u>1.3</u> 0.02	0	0.0	$PO_4 = 0.13$	161 13	120	19	4 62.	<u>۳</u>
			SALIN	SALINAS RIVER AT PASO ROBLES (STA. 43a)	T PASO I	ROBLES	(STA. 43a								
				_		-	-								
												,			
5.00	1-1	24 1.04	$\frac{13}{0.43}$	3.10		24 0.68			0.0		17	250	74	1,300. 10 500.	USGS
5.84 ^e 1	-	26 1.13	, <u>8</u> 0.27	3.74	10	28 0.79			0.1		16	292	92	3 6.2	0.0
6.92 ^e 1	1-1	44 1.91	8 0.27	264		50		0	0.4		22	346	116	3 2,400.	
5.78 ^e 1	1	28 1.22	6 0.20	3.84	1.0	<u>30</u> 0.85		0	0.2	00 0	17	289	87	<u>30 130.</u>	
<u>107</u> 16 5.34 1.30 1	-	36 1.57 0.04	4 0.07	282	<u>122</u> 2.54	<u>36</u> 1.02	$\frac{1.2}{0.02}$	0	0.0	$\frac{1}{2}$ ASS = 0.0 PO ₄ = 0.10	487 19	332	97	7 23.	2

s Field determination.

م.

Laboratory analysis. Analyzed by California Department of Public Health, Division of Laboratories.

Mineral analyses made by United States Geological Survey, Water Resources Division (USSS) or California Department of Mater Resources (DMR) as indicated.

ANALYSES OF SURFACE WATER

e Sum of calcium and magnesium in epm.

		S	pacific					Minsrol constituents	constit	uente in	1	parts quivolent	parts psr millian squivolents par million	million			Totel			Tuez		
Orscharge Temp Dist in cfs in oF or	yge	Diesplved con oxygen (mi	conductance (micromhos	I	Colcium Mogna-	ogna- Soo	Sodium Pots	Potse- Corban-	an - Bic	Bicar- Sul -		- 0- - N	- Fluo-	Boron	Silica	Other constituents	solved spilds	I I I I	Coco	- pid	Hordness bid- Coliform as CaCO ₃ 11v MPN/ml	Anelyzed
đ	Edd	% Sof	5	م ات	(c ²)	(6W)	(E	(c 0 ³)	3) (HC			-			(Si 0 ₂)		Edduj	T _o d	Totol N.C. ppm ppm	a¦ه منة		
								-	l CENTRA	L COAST	<pre>1 </pre>	N (NO.	3)	_								
_								SALINAS	RIVER	AT PASO	ROBLES	(STA. 4	SALINAS RIVER AT PASO ROBLES (STA. 43a) (Cont.)	nt.)								
								CARM	EL RIVE	R AT RO	CARMEL RIVER AT ROBLES DEL RIO (STA. 83)	. RIO (S	IA. 83)									
56	8.0	77	558	7.2 8.0		3.94 2.	64 2.78	0.00		<u>169</u> 2.77	<u>31</u> 0.87			0.0				41 197	58	~	13. 62.	USGS
20	11.2	66	169	7.5 8.0		1.26 ^e 0.	<u>8.5</u> 0.37	03	0.00	71	7.0	-19		0.0				23 63	~ ~	4	2.3 23.	
97	11.5	67	227	7.0 8.1		1.74 ^e 0.	12 0.52	0.00		93 1.52	9.0 0.25	-1:0		0.2				23 87	11	-	23. 23.	
67	10.3	06	250	7.8		1.92 ^e 0.	<u>13</u> 0.57	0.00		101 1.66	11 0.31	17		0.0				23 96	13	1	2.3	
54	11.2 10	105	241	7.8 8.1		1.88 ^e 0.	12 0.52	0.00		1.64	8.6	.12		0.2		:		22 94	12	15	13. 50.	
20	10.8	96	232	8.0	26	0.48 0.	11 0.48 0.05	0.00		100 19 1.64 0.40	10 10 0.28		<u>1.2</u> 0.02	0*0	24	A8 = 0.00 ABS = 0.0 $P0_4 = 0.05$	148	21 89		10	2.3	
	10.8 12	121	253	8.4		1.94 ^e 0.	$\frac{14}{0.61}$	2 0.07		1.66	$\frac{13}{0.37}$	-1-		0*0				24 97	11	-	6.2 13.	
	9.8	64	348	<u>7.6</u> 8.5		2.56	23 1.00	4 0.13		130	$\frac{16}{0.45}$.19		0*0				28 128	15	-	23. 23.	
_	-																					

TABLE D-2 ANALYSES OF SURFACE WATER

a Pield determination.

م

U

Laboratory analysis. Analysed by California Department of Public Nealth, Division of Laboratories. Mineral analyses made by United States Geological Survey, Water Resources Division (USGS) or California Department of Water Resources (DMR) as indicated.

Sum of calcium and magneslum in epm. ÷

		Anciyzed				DWR			DWR									
	U	bid - Coliform																
	Tur-	- hid	010				<u>70</u> 57											
		Mardness as CoCO ₅	POM POM			10			22	32	4.2	40	32	41	4.0	35	24	
		Hard as C	0101 00m			58			66	131	122	122	110	127	122	104	75	
	Per.	- pog				42			61	48	50	51	55	51	50	48	43	
	Totol	solved solids				137			243	305	321	349	308	329	313	260	185	
		Other constituents					Susp. solide = 87				Cu = 0.00 Zn = 0.00	Cu = 0.00 Zn = 0.00	Cu = 0.00 Zn = 0.00	$C_{\rm U} = 0.00$ $Z_{\rm h} = 0.02$	Cu = 0.00 Zn = 0.00	Cu = 0.00 Zn = 0.01	$C_{\rm U} = 0.00$ $Z_{\rm D} = 0.01$	
		Silico (SiO-)	iž)															
	-uo-	Boron S				0.1		()	0.1	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0,1	
million	per milion	Fluo- 8			308)			STA. 20										
parts per million		Ni- trote	(NO 3)	-	(STA.	<u>1.6</u> 0.02		JANT (S	1.0 0.02	3.8 0.06	<u>3.0</u> 0.05	2.9 0.05	0.10	<u>1.0</u> 0.02	$\frac{2.7}{0.04}$	<u>1.3</u> 0.02	$\frac{1.4}{0.02}$	
od	aquivolents	Chio- ride	(CI)	TEDUCT.	/10 GATE	28 0.79		PUMPING PLANT (STA. 207)	67 1.89	78 2.20	81 2.28	82 2.31	82 2.31	<u>83</u> 2,34	76 2,14	<u>66</u> 1,86	$\frac{44_4}{1,24_4}$	
-	č	Sul - fota	(SO4)	SOUTH BAY AQUEDUCI	VL AT AV	20 0.42		I BAY PI	29 0.60	41 0.85	<u>58</u> 1,21	$\frac{59}{1.23}$	62 1.29	$\frac{61}{1.27}$	55 1,14	4.5 0,94	<u>27</u> 0,56	
	tituen19	Bicor - bonote	(HCO ₃)	SOUTH	AKE CAN	58 0,95		AT SOUT	$\frac{94}{1.54}$	$\frac{121}{1.98}$	<u>97</u> 1,59	$\frac{100}{1.64}$	<u>57</u> 0.93	<u>105</u>	$\frac{100}{1.64}$	84 1.38	62 1,02	
	Minerol constituents	Corbon - ote		-	INTERIM INTAKE CANAL AT AVIO GATE (STA. 308)	0.00		BETHANY FOREBAY AT SOUTH BAY	0.00	0.00	0,00	0.00	<u>19</u> 0.63	0.00	0,00	0.00	0,00	
	Mine		<u>×</u>	-	INTE	3.1 0.08		ETHANY F	$\frac{2.7}{0.07}$	$\frac{3.2}{0.08}$	<u>3.0</u> 0.08	$\frac{3,1}{0,08}$	$\frac{3 \cdot 4}{0 \cdot 09}$	$\frac{3,5}{0,09}$	$\frac{3.0}{0.08}$	$\frac{2.6}{0.0/}$	$\frac{2.3}{0.06}$	
		Sodium				20 0.87		. 18	$\frac{46}{2,00}$	57 2.48	<u>58</u> 2.52	$\frac{60}{2,61}$	65 2 • 83	64 2.78	<u>58</u> 2,52	45 1,96	$\frac{27}{1.17}$	
		Mogne-	(Mg)			$\frac{6.2}{0.51}$			$\frac{12}{0.98}$	<u>15</u> 1.27	9 0.74	9.6 0.79	<u>10</u> 0,85	9.6 0.79	$\frac{14}{1.14}$	$\frac{11}{0.88}$	85 0.70	
		Colcium (Co)	1022			13			$\frac{20}{1.00}$	27	$\frac{34}{1.70}$	<u>33</u> 1,65	$\frac{27}{1.35}$	<u>35</u> 1.75	$\frac{26}{1.30}$	$\frac{24}{1.20}$	16 0.80	
		н	-10			7.1			8.1	8.2	8.1	8,1	9.3	8.3	8.3	8.1	8.0	
	Specific	conductonce (micromhos of 25°C)				231			449	565	571	580	569	584	554	474	338	
			%oSo1															
		Dieso	0°	_														
		Temp in oF					75											
		Oischorge Temp in cfs in oF																
		Dote ond time sompled	P S.T			4-20-65 0800	8=12=65 0930		10-1-64 1930	11=2=64 1630	12-1-64 1000	12-30-64 1645	2~9~65 1815	3-2-65 1000	4 - 1 - 65 1630	5-11-65 1000	6=1-65 1000	

ANALYSES OF SURFACE WATER TABLE D-2

> Field determinotion. 0

Leboratory analysis, Q

Analyzed by California Department of Public Health, Division of Laboratories.

Mineral analyses made by United States Geological Survey, Water Resources Division (0565) or Californie Department of Water Resources (DWR) as indicated. -0

ANALYSI ** OF SURFACE WATER

Sum of colctum and magnesium in apm. 0

	WATER
FABLE D-2	· SURFACE
ΤA	9
	ANALYSES

3		-		~				~~~~~			2ª					
2004	ĥ			DWR				DWR			DWR					
al face	wpN/mi															
Tur-	A 10			52	31	29		<u>28</u>	24							
	N UE				23	26										
				24	89	101					102	127	129	123	154	134
à				70	5 42	2 45					-7	299	5	298	351	347
Tota	polive abilde mpg			183	215	232		-	-		244	29	323	29	6	37
	Other constituents		A1 = 0.0.	$\begin{array}{llllllllllllllllllllllllllllllllllll$				Secchi dísk = 1.4 ¹ Susp. solide= 22	Secchi disk = 1./ Susp. solids= 16							
	Silica (SiO ₂)															
milian	Baron (B)		(10	0.1	0,1	0.1				214)						
per mi	Flua- ride (F)	-	STA, 20				312)			(STA.						
equivalents per milian	N:- 1rote (NO ₃)) INVIA	0.02	<u>1.0</u> 0.02	0.01	.(STA.			SERVOIR						
equive	Chig- ride (CI)	SOUTH BAY AQUEDUCT	UMP ING	45 1,27	45 1,27	$\frac{57}{1.61}$	AT CHECK			RSON RE:	$\frac{70}{1.97}$	$\frac{75}{2.12}$	81 2.28	73	$\frac{91}{2.57}$	87 2.45
č	Sul - fats (SO4)	BAY AQ	BAY P	26 0,54	26 0 + 54	29 0.60	ALTAMOR			PATTE	$\frac{30}{0,62}$	390.81	$\frac{57}{1,19}$	53	$\frac{59}{1.23}$	58 1.21
htuents	Bicar - bonate (HCO ₃)	SOUTH	T SOUTI	60 0.98	80 1,31	92 1.51	C DYER-			ANAL AT	<u>93</u> 1.52					
Mineral constituents	arban - B ate (CO ₃)		DREBAY A	0.00	0*00	0*00	DYER CANAL AT DYER-ALTAMONT CHECK (STA. 312)			ALLEY C	0,00					
Miner	Potas- Carban - (K) (CO _S)	F	BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA. 207)	2.4 0.06	2.7 0.07	$\frac{2*8}{0*07}$	DYER			LIVERMORE VALLEY CANAL AT PATTERSON RESERVOIR (STA. 214)						
	Sadium (Na)	t	BE	31 1.34	<u>31</u> 1.35	39 1.70				LLV	46 2 • 00					
	(6M) mus			<u>7.0</u> 0.58	9.5 0.78	$\frac{11}{0.92}$					$\overline{2.04}^{\text{e}}$	2.54 ^e	2.58 ^c	2,46 ^e	3,08 ^c	2,68
	Calcium (Ca)			18 0.90	$\frac{20}{1.00}$	$\frac{22}{1,10}$										
	H clr			7+2	8.0	8.2		7.27	7.3		8.0					
	Specific conductance (micramhas at 25°C)			333	359	421		339 ^a	3603		457	548	584	541	643	619
	Disectved cxygen ppm %Sat							.3 101	8,1 99							
-		-						75 8.				_				
-	Oischorgs Temp in cfs in OF															
	Date and time sampled P.S.T.			7-1-65 1730	8-3-65 1345	9-1-65 1120		8-12-65 1035	8-26-65		10-1-64 1755	11-2-64 1530	12-1-64 1600	12-30-64 1330	2=9-65 1600	3-2-65 1840

a Pield dcterminetion.

b Laboratory analysis. C Analysed by Galifornia Department of Public Health, Division of Laboratories. A Mineral analyse and by Whited States Geological Survey, Water Resources Utvision (USGS) or Galifornia Department of Water Resources (DMR) as indicated. A Mineral analyse and by Whited States Geological Survey, Water Resources Utvision (USGS) or Galifornia Department of Water Resources (DMR) as indicated. Sam of California anagnesium in ppo.

				S	pacific					Ming.	rol cons	Minarol constituents in	Ē	lovinpe	equivalents per million	Ir milli	uo		Totol		Tur-	0	
Dote ond time sampled P S.T	Discrorge Temp in Cfs in oF	Temp In oF	Diss(ot) ppm	gen (m 90 Sof	(micromhos pH at 25°C)	H PLA	Colcium (Co)	Magne- S sum (Mg)	Sodium P (No)	Potos- C. sium (K)	Carbon- 610 (CO ₃)	Bicor- bonate (HCO ₃)	Sul - 0 fote (S 0 ₄)	Chide - ride (CI)	Ni- trote (NO ₃)	Fluo- B. ride (F)	Boron Silico (B) (SiO ₂)	Other constituents	solved sod - solved sod - solved sod - in ppm	um Hordness um Totol N C ppm ppm	Hordness bid- ss CoCO ₃ 11y Totof N C 8 ppm ppm b	bid - Coliterm	Anolyzed
									-	-		SOUTH	I I SOUTH BAY AQUEDUCT	EDUCT	-		-						
								1	IVERMOR	E VALLE	Y CANAL	LIVERMORE VALLEY CANAL AT PATTERSON RESERVOIR (SIA, 214) (Cont.)	ERSON RI	ESERVOL	R (SIA.	214) (Cont.)						
4-1-65 1515					553			<u>2,28</u> c					42 0.87	71 2.00					312	114			DWR
5-11-65 1830					96 %			<u>2.16</u> ¢					40	67 1.89					284	108			
6-1-65 1100					355			1.62°					25 0.52	47 1.32					192	81			
7=1=65 1635					337			1.50 ^c					25 0.52	46 1.30					194	75			
											PATTER	PATTERSON RESERVOIR (STA. 313)	SNOLR (STA. 31	3)								
8-2-65 1220					358			1.780					26 0.54	45 1.27						89			DWR
9-1-65 1225					413			2.04 ^e					28 0.58	<u>55</u> 1.55						102			
								_		ALAME	DA CANA	ALAMEDA CANAL AT DEL VALLE CHECK (STA. 314)	VALLE	CILECK (STA. 31	3							
8-2=65 1145					359							_	26	$\frac{44}{1 + 24}$					194		31		DWR
8-12-65 1135		75	9.1	109	335 ⁴	7.9												Secchi disk = 1.1' Susp. solids= 34			28 41		
8=26=65 1210		78	7. 6	116	365 ⁸	7.3												Secchi disk = 1.4' Susp. solids= 21			24		
									-	SAN	TA CLAR	SANTA CLARA PERCOLATION FONDS (STA. 315)	ATION N	ovos (s	TA. 315.	-							
7=1=65 1445					24.9			1,28 ^e				•	0.35	<u>32</u> 0.90					153	64			DWR
8-2-65 1100					353			1.78 ^e					25 0.52	44 1 • 24					193	89	37		
9-1-65 1500								2,08 ^e					30	58					24.1	104	31		

ANALYSES OF SURFACE WATER TABLE D-2

> Field determination. 8 ۵.

Laboratory analysis.

Analyzed by California Department of Public Health, Division of Laborstories.

Mineral analyses made by United States Geological Survey, Mater Resources Division (USGS) or California Department of Water Resources (DWR) as indicated.

Sum of calcium and megnesium in com.

e

<u>North C</u> Gualala Navarro Noyo Ri Russian Valle Russia Russia Russia <u>San Fr</u> Alamed Coyote Los Ga Napa I <u>Centra</u> Carme Nacim Pajar Salin Salin Salir San 2 San H Fin San I Fe Soqu Uvas

SUMMARY OF COLIFORM ANALYSES

Station	Station Number	Colif Maximum	orm MPN/ml Median	Minimum
North Coastal Region (No. 1)				
Gualala River, South Fork, near Annapolis	9a	130	23.	0.62
Navarro River near Navarro	8b	620	23.	0.62
Noyo River near Fort Bragg	10c	230	62.	0.62
Russian River, East Fork, at Potter Valley Powerhouse	10a	230	23.	2.3
Russian River at Guerneville	10	7,000	146.	2.3
Russian River near Healdsburg	9	7,000	23.	6.2
Russian River near Hopland	8a	2,400	62.	6.2
San Francisco Bay Region (No. 2)				
Alameda Creek near Niles	73	620	23.	2.3
Coyote Creek near Madrone	82	7,000	23.	0.62
Los Gatos Creek near Los Gatos	74	2,400	42.5	1.3
Napa River near St. Helena	72	7,000	96.	6.2
Central Coastal Region (No. 3)				
Carmel River at Robles del Rio	83	62	13.	2.3
Nacimiento River near San Miguel	43ъ	620	13.	.23
Pajaro River near Chittenden	77	620	62.	2.3
Salinas River near Bradley	43c	620	16.5	0.23
Salinas River at Paso Robles	43a	2,400	90.	6.2
Salinas River near Spreckels	43	24,000	230.	23.
San Antonio River near Pleyto	43d	620	62.	2.3
San Benito River near Bear Valley Fire Station	77a	7,000	56.	2.4
San Lorenzo River at Big Trees near Felton	75	620	13.6	2.1
Soquel Creek at Soquel	76	7,000	56.	6.2
Uvas Creek near Morgan Hill	96	2,400	6.2	0.62

TABLE D-4 ANALYSIS OF TRACE ELEMENTS IN SURFACE WATER

									Canst	lituents	in parts	Canstituents in parts per billian	up						
Station	Station Number	Date	Ałumi- num (AI)	Beryl- lium (Be)	Bismuth Codmium (Bi) (Cd)	(Cdmum	Cabalt (Co)	Chro- mum (Cr)	Copper (Cu)	Iron (Fe)	(Gallium (Ga)	Germa- num (Ge)	Manga - nese (Mn)	Molyb- denum (Mo)	Nickel (Ni)	tead (Pb)	Trianium Vanadium {Ti) (V)	Vanadium (V)	Zinc (Zn)
NORTH COASTAL RECION (No. 1) RUSSLAN RIVER AT CUERNEVILLE	10	5-12-65	6.6	<0.57	<0.29	<1.4	<1.4	4.1 	≤1.4	64	5.7	<0.29	<1.4	≤0.29	2.0	<1.4	≤0.57	1.7	6.7
RUSSIAN RIVER AT GUERNEVILLE	10	9-15-65	15	<1.3	<0.67	Q.3	Q.3		Q.3			<0.67	6.3	<0.67	2.6	=	1.5	3.7	<13
SAN FRANCISCO BAY RECION (No. 2) Alamena CRFEK NEAR NILES	73	5-7-65	9.7	<0.57	<0.29	4.1>	<1.4	<1. ↓	<1.4	133	5.7	<0.29	<1.4	1.9	1.6	<1.4	0.69	2.9	€.7
ALAMBOA CREEK NEAR NILES	73	9-2-65	39		<0.29	<1.4	<1.4			>50		<0.29	<1.4	2.1	1.8	<1.4	2.3	6.9	€.7
ARROYO DEL VALLE NEAR LIVERMORE	71	5-3-65	3.7	<0.57	<0.29	<1.4	41.4	<1.4	<1.4	27		<0.29	<1.4	≤0.29	0,60	<1.4	<0.57	0.69	€.7
ARROYO DEL VALLE NEAR LIVERMORE	71	9-6-65	6.9	<0.57	<0.29	<1.4	<1.4	<1.4	<1.4	11		<0.29	_	<0.29	1.2	<1.4	1.0	0.7	<5.7
COYOTE CREEK NEAR MADRONE	82	5-6-65	111	<0.57	<0.29	<1.4	<1.4	_		314		<0.29	_	≤0.29	3.7	<1.4	12	1.9	€.7
COYOTE CREEK NEAR MADRONE	82	9-8-65	12	<0.57	<0,29	<1.4	<1.4			>50		⊲0.29	<1.4	<0.29	5.4	<1.4	2.3	1.1	\$.7
NAPA RIVER NEAR ST. HELENA	72	5=12-65	15	<0.57	<0.29	<1.4	<1.4		<1.4	89		<0.29	<1.4	≤0.29	1.3	3.1	⊴0.57	3.1	€.7
NAPA RIVER NEAR ST. HELENA	72	9-16-65	4*6	<0.57	<0.29	<1.4	<1.4	<1.4	<1.4	1.1	\$°1	<0.29	4.3	<0.29	1.5	<1.4	<0.57	1.3	<5.7
CENTRAL COASTAL REGION (No. 3) PAJARO RIVER NEAR CHITTENDEN	77	5-6-65	7.7	<0.57	<0.29	<1.4	<1.4	<1.4	<1.4	21	¢.1	@.29	<1.4	1.9	3.4	<1.4	<0.57	3.7	6.7
PAJARO RIVER NEAR CHITTENDEN	77	9-1-65	<1.4	<0.57	<0.29	<1.4	<1.4	<1.4	<1.4	22	0.1 .1	<0.29	<1.4	<0.29	6.3	<1.4	<0.57	11	<5.7
SALINAS RIVER NEAR SPRECKELS	43	5-6-65	7.7	<0.57	<0.29	<1.4	3.4	<1.4	8.9	50	\$.7	<0.29	>500	8.6	3.4	<1.4	0.57	2.5	5.7
SALINAS RIVER NEAR SPRECKELS	43	9-1-65	4.0	<0.57	<0.29	<1.4	<1.4	<1.4	<1.4	7.7	€.7	<0,29	5.1	7.4	2.9	<1.4	<0.57	0.8	5.7
SALINAS RIVER NEAR SPRECKELS	n 4		0 •	60.57	-0.29	<1.4	4		4.	· · ·			г. о	4.	6. N	4.1.4	2. 0	8.00	õ

RADIOASSAY OF SURFACE WATERS

					Micro-micro	Micro-micro curies per liter	
Sta.	Stream	Near	Date	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
S							
	NORTH COASTAL REGION	REGION (NO. 1)					
8 0	BIG RIVER NEAR	NEAR MOUTH	5-13-65	0.28 ± 1.00	0.51 ± 0.79	-1.05 ± 9.78	3 0.24 ± 8.00
9a	GUALALA RIVER, SO NEAR ANNAPOLIS	IVER, SOUTH FORK MAPOLIS	5-14-65	-0.49 <u>+</u> 0.66	0.00	3.04 ± 10.76	5 1.29 ± 8.00
8b	NAVARRO RIVER NEAR NAVARRO	NEAR NAVARRO	5-14-65	0.00	0.47 ± 0.89	-2.02 ± 10.59	9 0.87 ± 8.02
10c	NOYO RIVER NEAR FORT BRAGG	R FORT BRAGG	5-14-65	-0.10 ± 2.31	-0.28 ± 1.73	-4.34 ± 10.41	1 1.90 ± 8.41
10	RUSSIAN RIVER	RUSSIAN RIVER AT GUERNEVILLE	5-12-65	0.00	-0.39 ± 1.71	-3.95 ± 10.68	8 3.66 ± 8.02
6	RUSSIAN RIVER	RUSSIAN RIVER NEAR HEALDSBURG	5-12-65	0.17 ± 1.03	0.00	0.04 ± 10.10	0 30.12 ± 11.94
ರ ೧೦	RUSSIAN RIVER	RIVER NEAR HOPLAND	5-12-65	-0.22 ± 0.60	0.00	-2.62 ± 11.75	5 2.08 ± 8.21
10a	RUSSIAN RIVER, POTTER VALLE	RIVER, EAST FORK AT VALLEY POWERHOUSE	5-12-65	0.00	0.00	-6.26 <u>+</u> 9.66	6 5.36 <u>+</u> 8.40
	SAN FRANCISCO BAY REGION	AY REGION (NO. 2)					
73	ALAMEDA CREEK	CREEK NEAR NILES	5-7-65	0.63 ± 3.22	0.39 ± 0.48	18.15 ± 12.55	5 0.29 ± 0.92
71	ARROYO DEL VALLE NEAR LIVERMORE	LLE NEAR	5-3-65	0.60 ± 4.47	-0.28 ± 0.60	3.27 ± 12.53	3 9.48 ± 9.31
82	COYOTE CREEK NEAR MADRONE	VEAR MADRONE	5-6-65	-0.39 ± 0.41	-0.16 ± 0.60	4.19 ± 10.29	19 3.00 <u>+</u> 8.51
74	LOS GATOS CREI	LOS GATOS CREEK NEAR LOS GATOS	5-6-65	1.71 ± 1.79	-0.27 ± 0.59	-11.42 ± 10.22	22 11.11 ± 9.63
72	NAPA RIVER NE	NAPA RIVER NEAR ST. HELENA	5-12-65	0.06 ± 0.95	0.24 ± 0.69	-6.55 ± 11.97	97 -1.21 + 7.90

-173-

RADIOASSAY OF SURFACE WATERS

Sta.	Stream	Negr	Date			W	cro-mi cro	Micro-micro curies per liter	ter		
No.		5		Dissolved Alpha	Alpha	Solid Alpha	lpha	Dissolved Beta	Beta	Solid Beta	
	CENTRAL COASTAL]	ASTAL REGION (NO. 3)									
83	CARMEL RIVER AT ROBLES DEL RIO	ROBLES DEL RIO	5-6-65	-0.19 ± 0.78	0.78	0.28 ± 0.55	0.55	15.23 ± 10.81	10.81	6.57 ± 9.22	22
43b	NACIMIENTO RIVER	RIVER NEAR SAN MIGUEL	5-4-65	1.11 ± 2.13	2.13	1.06 ± 1.11	1.11	5.58 ± 12.57	12.57	-8.69 ± 8.25	25
77	PAJARO RIVER NEAR CHITTENDEN	R CHITTENDEN	5-6-65	1.00 ± 3.53	3.53	0.43 ± 0.79	0.79	-3.72 ± 13.12	13.12	7.54 ± 8.70	20
43c	SALINAS RIVER NE	JER NEAR BRADLEY	5-4-65	2.07 ± 1.93	1.93	1.02 ±	1.12	-5.98 +	11.02	0.87 ± 8.08	80
43a	SALINAS RIVER NEA	FR NEAR PASO ROBLES	5-4-65	0.26 ± 2.32	2.32	0.08 ±	0.70	0.08 ±	13.26	-4.91 + 7.91	91
43	SALINAS RIVER NEAR SPRECKELS	AR SPRECKELS	5-6-65	-1.25 ± 3.89	3.89	1.14 ± 0.84	0.84	7.50 ±	15.90	-1.29 ± 8.08	80
77a	SAN BENITO RIVER NEAR VALLEY FIRE STATION	RIVER NEAR BEAR RE STATION	5-4-65	0.56 ± 3.31	3.31	1.13 ± 1.14	1.14	0.32 ± 13.01	13.01	6.42 ± 9.66	99
75	SAN LORENZO RIVER AT BIG TREES NEAR FELTON	R AT BIG TREES	5-7-65	2.03 ± 2.06	2.06	0.55 ± 1.12	1.12	-2.01 ±	11.13	17.08 ± 8.53	23
76	SOQUEL CREEK AT SOQUEL	SOQUEL	5-6-65	0.37 ± 2.52	2.52	0.12 ± 0.81	0.81	21.85 ± 13.71	13.71	-0.44 ± 9.14	14
96	UVAS CREEK NEAR 1	NEAR MORGAN HILL	5-6-65	0.13 ± 0.92	0.92	-0.47 ± 0.49	0.49	2.35 ± 10.21	10.21	0.00	

S

terekætt Lertines 2017 (hissop 2016)e 10122

uttsborg killizsvilla

Crockett

Kertinez Port Chie Gidle H Pottsbar

* Yesz
* Yesz
* Yesz
* Test
* Trest

DESCRIPTION OF SALINITY OBSERVATION STATION 1964-65 Water Year

Crockett		Gate (a)	Hour	s Mir										
Crockett					'									
	- San Pablo Bay	27.7	3	30		end of wherf o	Carquine: f C and I	z Strait, I Sugar F	south sh Lefinery C	nore, 0.2 Corporati	2 mile es lon.	st of Car	quínez B	ridge
Martinez	- Carquinez Strait	33.1	3	50		led from			ny dock, a idge.	about 0.6	o mile do	wnstream	from Sou	thern
Port Chicago	- Suisun Bay	41.0	4	20		h shore ort Chica		n Bay at	U. S. Hav	val ammun	nition lo	ading what	rf below	
Middle Point	- Suisun Bay	41.5	4	30		h shore stream f	of Suisur rom Middl	n Bay at Le Point.	Allied Ch	nemical 1	Plant int	ake, abou	st 0.5 mi	le
Pittsburg	- Suisun Bay	48.0	5	00	East	end of	Suisun Ba	ay, south	shore, a	t Pitts	ourg Yach	t Harbor,		
Collinsville	- Sacramento River	50.8	5	25	Sacr	amento R	iver, no:	rth bank	at juncti	lon with	San Joaq	uin River		
MA									ND D f wote		A ST	ATIO	NS	
	STATION							WATER	YEAR	2				
	5121101		1931	1938	1939	1944 c	1952	1955	1956 d	1958	1959	1963	1964	1965
Unimpa	Jaaquin Delta Syste nred Runatf in t of Average (e)	m	35	191	50	63	171	64	178	169	67	132	63	150
Crockett Martinez Port Chicago Middle Point Plttsburg			6900 I	860	16400	4700	13200 8900 6900 1200 783	16600 11900 12500 7800 3880	15300 11900 9750 3440 2280	11900 7150 5830 1200 550	15000 10200 15640 5110 5430	13100 11500 9200 1350 1980	14600 12900 10700 10100 3280 3730	12800 11200 9710 9840 1300 2080

* Ocean water contains approximately 18,200 parts per million of chloride.

Mileage measured to station along main channel. For stations off the main channel, the mileage shown is the same distance along the main channel to a point whereon the time of the occurrence of the tidal phase is the same as that of the observation station.
 Caleases of stored water from Shasta Lake commenced in 1944.
 K leases of stored water from Shasta Lake commenced in 1956.
 Average taken as mean annual unimpsired flow at foothill stations of major tributaries for 50-year period October 1910 through September 1960.

TABLE D-7 SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water

				DAT	7			
STATION	10-2-64	10-6-64	10-10-64	10-14-64	10-18-64	10-22-64	10-26-64	10-30-6
Crockett	10700	11400	10600	10000	11700		12400	10600
Martinez	a6850	a8330	a8690	a7820	8350			
Port Chicago	6090	5440	5130	4610		7650	7530	ae5190
Middle Point	a3850	4600	5170	3920	#9840	6430	6540	
Pittaburg			418	a354	d450		823	
Collinsville	a309	595	a314	a442	520	2080	a726	920
STATION				DA1	CE.			
	11-2-64	11-6-64	11-10-64	11-14-64	11-18-64	11-22-64	11-26-64	11-30-6
Crockett	11700	10200	10200	7040	10200	8560	9700	8320
Martinez				5630	7480	8140	7100	7480
Port Chicago	4890	5380	5120	a784	4510	3390	4370	4060
Middle Point				1190	3280	3920	3000	3240
Pittaburg			a413		65			d113
Collinsville	716	567	a600	28		a38	50	48
STATION				DAT	E			
3141101	12-2-64	12-6-64	12-10-64	12-14-64	12=18=64	12-22-64	12-26-64	12-30-
Crockett	9720	8100	8000	9300	11700	10700	23	
			1					
Martinez	8300	2840	a4090	ae5200	7600	8770	27	18
Martinez Port Chicago	8300 5280	2840 2740	a4090 ed3170	ae5200 5290	7600 6710	8770 46000	27 6825	
								18
Port Chicago	5280	2740		5290	6710	d6000	b025	18
Port Chicago Middle Point	5280	2740 1130		5290	6710 a3360	46000 4870	b025	18 al5
Fort Chicago Middle Point Pittsburg	5280 a2150	2740 1130 113	ed3170	5290	6710 a3360	46000 4870	b d2 5 8	18 al5
Port Chicago Middle Point Pittsburg	5280 a2150	2740 1130 113	ed3170	5290	6710 a3360	46000 4870	b d2 5 8	18 al5
Port Chicago Middle Point Pittsburg	5280 a2150	2740 1130 113	ed3170	5290	6710 a3360 ed319	46000 4870	b d2 5 8	18 al5
Port Chicago Middle Point Pittsburg Collinsville	5280 a2150	2740 1130 113	ed3170	5290 4260	6710 a3360 ed319	46000 4870	b d2 5 8	18 a15 4
Port Chicago Middle Point Pittsburg Collinsville	5280 e2150 332	2740 1130 113 a24	ed3170 35	5290 4260	6710 a3360 ed319 E	46000 4870 394	bd25 8 4	18 al5 4 1-30-6
Fort Chicago Middle Point Pittaburg Collinsville STATION	5280 a2150 332 1-2-65	2740 1130 113 a24	ed3170 35 1-10-65	5290 4260 <u>PAT</u> 1-14-65	6710 a3360 ed319 E	46000 4870 394 1-22-65	bd25 8 4 1-26-65	18 a15 4 1-30-6 3160
Fort Chicago Middle Foint Pittsburg Collinsville STATION Crockett	5280 a2150 332 1-2-65	2740 1130 113 a24 <u>1-6-65</u> 74	ed3170 35 <u>1-10-65</u> 42	5290 4260 1-14-65 2280	6710 a3360 ed319 E 1-18-65	46000 4870 394 1-22-65 2080	bd25 8 4 <u>1-26-65</u> 2130	18 a15 4 1-30-6 3160 1830
Fort Chicago Middle Point Pittaburg Collinsville STATION Crockett Martinez	5280 a2150 332 1-2-65	2740 1130 113 a24 <u>1-6-65</u> 74 15	ed3170 35 <u>1-10-65</u> 42 20	5290 4260 1-14-65 2280 1320	6710 a3360 ed319 E 1-18-65	46000 4870 394 <u>1-22-65</u> 2080 168	bd25 8 4 <u>1-26-65</u> 2130 854	18 =15 -4 1-30-6 3160 1830 -25
Fort Chicago Middle Foint Pittaburg Collinsville STATION Crockett Martinez Fort Chicago	5280 a2150 332 1-2-65 1060	2740 1130 113 a24 <u>1-6-65</u> 74 15 21	ed3170 35 <u>1-10-65</u> 42 20	5290 4260 1-14-65 2280 1320 20	6710 a3360 ed319 E 1-18-65 1560	46000 4870 394 <u>1-22-65</u> 2080 168 30	bd25 8 4 <u>1-26-65</u> 2130 854 24	18 •15 4 1-30-6 3160 1830 25 18
Fort Chicago Middle Foint Pittaburg Collinsville STATION Crockett Martinez Port Chicago Middle Foint	5280 a2150 332 1-2-65 1060 21	2740 1130 113 a24 <u>1-6-65</u> 74 15 21 11	ed3170 35 <u>1-10-65</u> 42 20 15	5290 4260 1-14-65 2280 1320 20 a21	6710 a3360 ed319 E 1-18-65 1560 21	46000 4870 394 <u>1-22-65</u> 2080 168 30 26	bd25 8 4 <u>1-26-65</u> 2130 854 24 23	18 18 415 4 1-30-6 3160 1830 29 18 25 6

* Samples taken at four-day intervals approximately one and one-half hours after high high tide. a Taken after Low High Tide. c Taken two days later. c Taken two days earlier. b Taken on proceeding day. b Taken one hour off scheduled time. f Taken two days earlier.

inter ST. TEL 202

1.0320 à in

inter 1000

F.e.s

ler::;

h.

200

1

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In ports of chloride per million ports of water

STATION		1		DA	TE.			r
	2-2-65	2-6-65	2-10-65	2-14-65	2-18-65	2=22=65	2-26-65	
Crockett	4060	2720	3570	5890	2790	4310	7310	
Martinez	1810	1830	ae210	a194	a2060	3800		
Port Chicago	27	26	485	792	38	619	d1230	
Middle Poiot		d22	19	84	26	26	a136	
Pittsburg		20	35	27		26		
Collinsville	7	8	9	11	a20	12	16	
							ĺ	
STATION				DA	TE		1	
	3-2-65	3-6-65	3-10-65	3-14-65	3-18-65	3-22-65	3-26-65	3-30-65
Crockett	6250	5210	6360	7020	5670	6290	5920	7160
Martipez			4440	7410	4060	4920	ae4530	a4920
Port Chicago		a408	1280	df1580	246	1840	1880	1780
Middle Point	903	a68	1010	822	236	1.580	1240	a1720
Pittsburg		d24	bd21	26		d26	25	bd38
Collinsville	14	12	16	14		25	20	17
								1
STATION		1	1	DA	TE			
	4-2-65	4-6-65	4-10-65	4-14-65	4-18-65	4-22-65	4-26-65	4-30-65
Crockett	8480	7310	6170	3340	3610	1740	3460	4430
Marticez	a3820	a3240	3150	a2260	a574	260	a1440	544
Port Chicago	1970	1720	1230	57	29			
Middle Poiat		955	472	22	31	19	14	a11
					51		-	
Pittsburg			d23	a31	31	22	a13	a13
Pittsburg Collinsville	a14	15	d23 20		a7			a13 ad10
·	a14	15		a31		22	a13	
· ·	a14	15		a31		22	a13	
, i i i i i i i i i i i i i i i i i i i	a14	15		a31		22	a13	
, i i i i i i i i i i i i i i i i i i i	a14	15		a31	87	22	a13	
Collinsville	a14	15 5-6-65		a31 a22	87	22	a13	
Collinsville			20	a31 a22 DA	a7 TE	22 4	a13 a5	ad 10
Collinsville		5-6-65	20	a31 a22 DA	e7 <u>TF</u> 5#18=65	22 4 5-22-65	a13 a5 5-26-65	ad10
Collinsville STATION Crockett Martinez		<u>5-6-65</u> 2880	20 5=10-65 5790	a31 a22 5-14-65 7170	e7 TE 5+18-65 4750	22 4 5-22-65 4910	a13 a5 5-26-65	ad10
Collinsville STATION Crockett Martinez Port Chicago		5-6-65 2880 a632	20 <u>5-10-65</u> 5790 a3390	a31 a22 5-14-65 7170 5060	e7 TE 5+18-65 4750 a2720	22 4 5-22-65 4910	a13 a5 <u>5-26-65</u> 6080	ad10
Collinsville STATION Crockett Martinez Port Chicago Middle Point	<u>5-2-65</u> 3850	5-6-65 2880 a632 a19	20 5-10-65 5790 n3390 1220	a31 a22 5-14-65 7170 5060 1940	e7 TE 5+18-65 4750 a2720	22 4 5-22-65 4910 a3240	a13 a5 <u>5-26-65</u> 6080	ad10
Collinsville STATION Crockett Martinez Port Chicago	<u>5-2-65</u> 3850	5-6-65 2880 a632 a19	20 5-10-65 5790 a3390 1220 d51	a31 a22 5-14-65 7170 5060 1940	e7 TE 5+18-65 4750 a2720	22 4 5-22-65 4910 a3240 45	a13 a5 <u>5-26-65</u> 6080	ad10
Collinsville STATION Crockett Martinez Port Chicago Middle Point Pittsburg	<u>5-2-65</u> 3850 12	5-6-65 2880 a632 a19 17	20 5-10-65 5790 a3390 1220 d51	a31 a22 5-14-65 7170 5060 1940 1480	a7 5+18-65 4750 a2720 1400	22 4 5-22-65 4910 a3240 45 a13	a13 a5 <u>5-26-65</u> 6080	ad 10
Collinsville STATION Crockett Martinez Port Chicago Middle Point Fittsburg	<u>5-2-65</u> 3850 12	5-6-65 2880 a632 a19 17	20 5-10-65 5790 a3390 1220 d51	a31 a22 5-14-65 7170 5060 1940 1480	a7 5+18-65 4750 a2720 1400	22 4 5-22-65 4910 a3240 45 a13	a13 a5 <u>5-26-65</u> 6080	ad 10

* Samples taken at four-day intervals approximately one and one-half hours after high high tide. a Taken after low high tide. b Taken on following day. c Taken two days later.

1065)

h.,

321 15 -35 32-2

ų,

15

TABLE D-7 SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts af water

STATION				DA	TE			
STATION	6-2-65	6-6-65	6-10-65	6-14-65	6~18-65	6-22-65	6-26-65	6-30-65
Crockett	7290	e 7330	7220	7650	7000	d9210	9680	11300
Martinez	a5440		a3980	a3830	4810	e6950	3410	d10200
Port Chicago	3400	a1040			1650	e3370		d4840
Middle Poiot	3160	a521	744	1610	885	e2540		6160
Pittsburg	abd44	a41	a24		bd31	ad35	a95	a200
Collinsville	74	de20	a12	26	16	a21	al8	736
C TATION		<u> </u>	<u></u>	DA	NTE		<u> </u>	<u> </u>
STATION	7-2-65	7-6-65	7-10-65	7-14-65	7-18-65	7-22-65	7-26-65	7-30-65
Crockett	9600	e10700	13000	10900	7890	e9660	12800	12800
Martipez	d8520	e9420	7930	a6780	7870	e9070	11200	9960
Port Chicago	5030	e4020		5460		e6490	9710	7520
Middle Point	4460	e3360	5410	5310	4170		3510	6770
Pittsburg		a434	a331			a437	a775	
Collinsville	469	a272	a279	a528	765	a344	a 1080	1700
STATION		<u> </u>	<u> </u>	DA"	TF	L	1	<u> </u>
STATION	8-2-65	8-6-65	8-10-65	8-14-65	8-18-65	8-22-65	8-26-65	8-30-65
Crockett	12700	e12800	12400	11300	10900	e11600	11600	12200
Martinez	11100	e11200	10200	10900			10:+00	10400
Port Chicago			a5270	a5100	6780	e7560	6700	5670
Middle Point		e7050	6460	6010				
Pittsburg	a1300	a1080	a817	a845	ad644	abd431		bd-+98
Collinsville	a1250	a919	a923	1050	a520		a367	a688
STATION				DA	TE			
01111011	9-2-65	9-6-65	9-10-65	9-14-65	9-18-65	9-22-65	9-26-65	9-30-65
Crockett	9970	11100	11100	9070	9110	10000	10100	8450
Martinez	8830	abd7540	a6660	6950	a5660		7370	5270
Port Chicago								
Middle Point			d3380	2190	5120	a2240		
Pittsburg		abd331	a313		ad151	a1+3	18	
Collinsville	a223	a297	a287	a123		a108		
COTTINSVILLE								
GIIInsviile								

* Samples taken at four-day intervals approximately one and one-half nours after high tide. a Taken after low high tide. b Taken on following day. c Taken tor days later. c Taken tor days after. c Taken tor days after.

WATER

NUTHER IN SURFACE

•

.

=

.

	Total B Organic	Photophat (PO ₄)		0,62		1.4	0.95	0,38		0.63	0.85	32	11	0.47	0.58	0,15	0.13			
	Tatal	(PO.)		0.39		1.2	0,82	0,20		0.22	0,68	32	11	0.43	0.48	0,06	0.05			
m d d =	Organic Ortho- Tatal Tatal 8 Nitragen phasphatePhasphate Organic	(PO.4)		0.31		1.1	0, 52	0,12		0.16	0.65	32	11	0.43	0.48	0.04	0,04			
4	rganic itragen p	(N		0.0		0.3	0.5	0.0		2.6	6.0	5,1 3	1,8 1	0.6	0,18	0.3	0, 15			
Nutrients -		(N)		0,1		0,8	0.5	0.1		0.2	0.1	3.2	0.9	0.0	0,1	0.0	0.0			
N U I	attrite h	(N)		0,01		0,01	00 ° 00	0, 06		0, 03	0, 02	0,77	0.39	00.00	00°00	0.0	00.00	_	_	
	Nitrate Amman. Nitrite Nitrate	(N)		00*00		0.05	0,16	0,00		1.5	0,03	25	20	0.0	0.04	0.0	0,10			
	Nitrate A	(°0°)																		
	Other Constituents and Remarks																			
	Solids	(mdd)																		
	Field Suspand'd			10		<u>50</u>	70			13	20	13	ľ	l.	F		-			
	Disk	(Fsst)						2,5								10				
:	Ha I	P P		$\frac{8.0}{7.9}$		$\frac{7,8}{8,4}$	8.1	8,4		7.8	8.0 8.0	7.2	7.9	7.6 8.5	$\frac{7,8}{8,1}$	8.4	8.4			
Specific	nicramhas at 25°C) Eietd	lob Lob		270		488	782			1470	1380	1310	937	364	366					
		% Sot		118		101	126	62		101	98	45	48	52	108					
	Dissolved Oxygen	ppm %oSat		10.8		10.0	10.2	6.4		9.6	9.0	4.8	5.2	9.4	6.9	9,5	5, 0			
	Temp in of			68		61	81	58		65	68	55	53	62	67	58	64			
	Orscharge Temp in cfs in of			275		37	38	TIDAL		5.0	5.0	2.5	2.0	36	20					
	Dote and time	P S.T.		9-15-65 0830		7-14-65 0900	9-2-65 1330	9-15-65 1200		7-8-65 1000	9-1-65 1230	7-8-65 0400	9-1-65 0700	7-6-65 0845	9=7-65 1300	7=6=65 0715	9-7-65 0802			
	Station Number			10		73	73	72a		77	77	43	43	75	75	120	120			
	Station		NORTH COASTAL REGION (No. 1)	RUSSLAN RIVER AT GUERNEVILLE	SAN PRANCISCO BAY REGION (No. 2)	ALAMEDA CREEK NEAR NILES		NAPA RIVER AT DUTTON'S LANDING	CENTRAL COASTAL RECION (No. 3)	PAJARO RIVER NEAR CHITTENDEN		SALINAS RIVER NEAR SPRECKELS		SAN LORENZO RIVER AT BIG TREES		SANTA CRUZ PLER				

	Tatal B Organic	Phosphat (PO ₄)		0.27	0.15	0.26	0,27	0.30	0.48	0.81	0.29	0.42	0.36	0.36	0.26	0.29	0.27	0.27	
	Total Phosphate	(PO4)		0,18	0,07	0.24	0.22	0.11	0.38	0.36	0.23	0,28	0*30	0.26	0.26	0.24	0.24	0.22	
m d d =	Organic Ortho- Total 1 Nitrogen phosphatePhosphate	(PO4)		0.17	0°0,04	0.12	0.18	0,02	0.29	0,02	0.21	0.24	0,20	0,25	0.26	0.24	0.27	0.22	
- i -	Organic Nitrogen	(N)		0.3	0.2	0.0	0,3	1.4	0.4	1.5	0.1	0.4	0.4	0.2	0,1	0,1	0.2	0.4	
Nutrients		(N)		0.9	0.5	0.03	0.9	0.2	0.8	0.2	0.0	0.4	0*0	0.8	0.5	0,8	0.4	1.2	
Nut	trite	(N)		0,04	0,01	0,01	0.02	0.02	0.01	0° 00	0.01	0,00	0°*00	0.02	0.02	0.02	0,01	0.02	
	Ammon- Nitrite Nitrote ium	(N)		0.20	0,01	0*00	0,00	0.01	0.08	0°°0	0,05	0, 05	0,30	0.21	0,08	0,00	60°0	0.09	
	Nitrote A	("ON)		4.0	2.2	1.3	4.0	0.9	3.5	0.9	0.0	1.8	0*0	3,5	2.2	3, 5	1.8	5.3	
	Other Constituents ond Remorks							-											
	Suspand'd Solids	(mqq)																	
	Turbidity Suspend'd Freid Freid	Lob		10										216					
	Disk	(Feet)		2.8	6.5	7.4	4.7	2.5	1.5	1.5	2.0	1.1	1.1		6.7	4 * D	4.5	3.5	
	Hd I	Lob		7.5	<u>9.0</u>	8.2	7.6	9.1	7.1	8.9	7.3	7.3	7.1	6.6					
Specific	(micromhos PH ot 25°C) Field FId	Lob		370	330	400	220	625	215	275	270	310	140	580					
	Dissolved Oxygen	ppm %Sot		98	118	104	94	141	92	121	85	87	06	88					
	Disso Oxy	u dd		11.4	12.9	11.5	9.7	14.5	8.9	12.3	8.1	8.0	8.3	9,5					
	• Tamp	_		47	52	51	57	57	62	58	64	67	67	53	51	52	49	50	
	Dischorge Tamp in cfs in ^d F																		
	Dote and time sampted	P.S.T.		2-11-65 0845	2-25-65 0930	3-11-65 1000	3-25-65 0930	4-8-65 0940	4-22-65 1100	5-6-65 1005	5-20-65 0615	6-3-65 0930	6-16-65 1030	12-3-64 1010	12-17-64 0945	12-31-64 1015	1-14-65 0955	1-28-65 0953	
	Station Number			309	309	309	309	309	309	309	309	309	309	310	310	310	310	310	
	Stotion		SOUTH BAY AQUEDUCT	INTERIM INTAKE CANAL AT INTERIM FUMPING FLANT										BETHANY FOREBAY NEAR BETHANY DAM					

NUTRIENTS IN SURFACE WATER

_	6 2 2	-		5	80	0			5	<u>م</u>	5		9	0		0	9	9	
	Totol Drga	(PO.)		0.25	0.28	0.62	0,38	0.23	0.22	0.23	0.25	0.27	0.36	0°30	0,35	0° 00	0.36	0.36	
	Totol	(b0,		0.22	0.22	0.45	0.28	0.20	0,19	0,18	0.14	0.22	0.26	0,26	0.26	0,32	0.28	0.28	
udd	Ortho- Totol Totol B phosphotePhosphole Organic Phosphote	(P0 +)		0.22	0.21	0.36	0.26	0.16	0,17	0,17	0,12	0,18	0.23	0.22	0,23	0.28	0.25	0.25	
	Organic Nitrogen	(N)		0.4	0.5	0.2	0°4	0.2	1.0	0.2	0.7	0,2	0.4	0,2	0.3	0.6	0.3	0.4	
Nutrients	Nitrote	(N)		0.8	0.9	1.4	0.8	1.6	0.6	1.5	0.6	0.3	0.1	0.2	0.0	0.2	0.2	0.3	
N L	Nitrite	(N)		0.02	0,01	10.01	0.02	0*00	0,01	0,01	0° 00	0,01	0.00	0.01	0,01	0, 02	00*00	0,01	
	icmon-	(N)		0.24	0.01	0,03	0.12	0,05	0*01	0,10	0*03	0.08	0.03	0.04	0.02	0.2	0.17	0,15	
	Nitrate Ammon-Nitrite Nitrote jum	(NO ₃)		3.5	4.0	6.2	3.5	7.1	2.7	6.6	2.7	1.3	0.4	0.9	0.0	0.9	0.9	1.3	
	Other Constituents and Remarks																		
	Solids	(m q q)																	
	Turbidity Suspend'd Field	9			20									30				22	
	Disk	(Fee!)				1.0	0.3	2.0	2.4	2.3	2.1	2.0	1.5	1,5	1,2	1,1	1.0	1.4	
	FId	ŝ			7.8	8.0	8.1	8.1	8.0	8.1	8,3	7.6	7.5	7.3	7.5	7.5	7.6	7.5	
Spacific	(micramhos pH at 25°C) Field Fld	Lob			575	580	600	530	545	515	530	365	342	230	320	355	355	360	
	Dissolved	ppm %50			98	100	98	103	66	105	98	94	92	97	96	91	06	80	
		шdd			11,1	10.9	10.2	10.7	10.3	10.4	10.1	9.1	8.8	8.9	8.8	7.9	7.9	6.8	
	Tamp in oF	_		51	67	52	56	56	56	60	57	62	64	67	67	72	71	74	
	Dischorge Temp in cfs in of											_							
	Date and time sampled	P S.T.		11-19-64 1045	2-11-65 0915	2-25-65 1015	3-11-65 1030	3=25=65 1015	4-8-65 1015	4-22-65 1150	5-6-65 0945	5-20-65 0650	6-3-65 0955	6-16-65 1105	7-1-65 0930	7-15-65 0950	7-29-65 1005	8-12-65 0955	
	Station Number			311	207	207	207	207	207	207	207	207	207	207	207	207	207	207	
	Station		SOUTH BAY AQUEDUCT	BETHANY FOREBAY AT MID-LENGTH	BETHANY FOREBAY AT SOUTH BAY FUMPING PLANT														

	Total B Organic	Phasphat (PO ₄)		0.33	0.40	0.33	0.39	0.42	0.42	0.42	0.32	
	Tatal Phasphate	(PO4)		0.30	0,28	0.29	0.30	0.25	0.28	0.29	0,27	
m d d -	Organic Ortho- Total Tatal B Nitrogen phosphatePhasphate Organic	(PO4)		0.28	0.24	0.26	0,27	0.24	0.26	0.26	0.27	
1 1 1	Organic Vitrogen p	(v)		0.4	0.5	0.4	0.3	0.4	0.4	0.46	0.4	
Nutrients -	4 trate	(N)		0.4	0.3	0.4	0.2	0.0	0.2	0.9	0.5	
Nutr	htite	(N)		0,02	10.0	10.0	0.00	0.01	0.01	10*0	0, 02	
	Nitrate Amman-Nitrite Nitrate ium	(z		0,15	0,01	0,04	0,02	0.01	0.06	0,13	0,04	
	Nitrate	(NO ₅)		1.8	1,3	1,8	0.9	0.0	0.9	4.0	2.2	
	Other Constituents and Remarks											
	Suspend'd Solids	(m d d)		16					28	77	14	
	Turbidity Suspend'd Solids	Lob		<u>20</u> 25				32	13	<u>42</u> 25	$\frac{22}{25}$	
	Secchi Disk	(Feet)		1.6	0*0	1.0	1,0	1.0	1.2	1.4	1.7	
	H I	2		7.5	7.5	7.5	7.6	7.6	7.3	7.7	7.6	
Specific	(micromhos P of 25°C)	Lob		565	310	325	320	315	370	470	580	
	p u e d	°/o Sat		80	100	110	110	111	113	110	106	
	Dissolved Oxygen	mqq		7.4	0.6	9,3	9.5	9.4	9.4	9.7	9,5	
	a Temp			99	68	74	72	75	76	70	68	
	Dischorge Temp											
	Cate and time	P.S.T.		9-23-65 0845	7-1-65 1045	7=15=65 1105	7-29-65 1110	8-12-65 1100	8-26-65 1135	9-8-65 1050	9-23-65 1040	
	Station Number			207	214	214	214	214	214	214	214	
	Statian		SOUTH BAY AQUEDUCT	BETHANY FOREBAY AT SOUTH BAY FUMPING FLANT (Cont.)	LIVERMORE VALLEY CANAL AT PATTERSON CHECK							

TE CUISU ESSUE UT

> <u>al Principio</u> Canada che

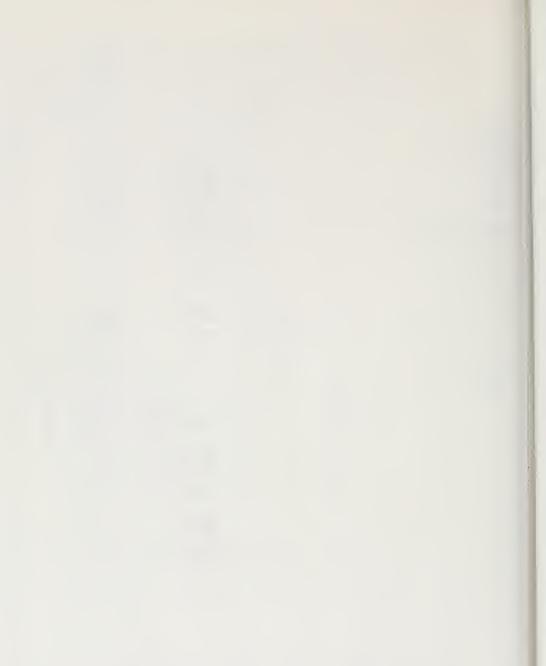
> > REA REVER

<u>ITTAL 00451</u> E4900 DBAI

11,11,00 1,171

<u>u'ites</u> RE

<u>urin</u>s ii


AT LOED

2011 (2017

TTE BY A BIGHT R REFER

TABLE D-9 PESTICIDES IN SURFACE WATERS AND SEDIMENTS

Stotion	Stotian Number	Date and time sampled P.S.T.	Discharge in cfs	Specific conductance (micromhos at 25 ^a C)	pH Field Lab	Pesticides in Woter (ports per trillion)	Pesticides in Sediment {ports per billion of dry weight}
NORTH CDASTAL REGION (NO. 1) RUSSIAN RIVER AT GUERNEVILLE	10	9-15-65 0830	275	270	8.0 7.9	BHC = 1	Lindane = 7
SAN FRANCISCO BAY REGION (NO. 2) ALAMEDA CREEK NEAR NILES	73	9-2-65 1330	38	486	8.1 7.7	Lindane = 1 ppDDE = 1 BHC = 2 Dieldrin = 3 ppDDD = 8	ppDDE = 20 ppDDD = 63
NAPA RIVER AT DUTTON'S LANDING	72a	9=15=65 1200				Lindane = 1 BNC = 2	ppDDE = 7 ppDDD = 30
CENTRAL COASTAL REGION (NO. 3) BLANCO DRAIN INTO SALINAS RIVER	246	1-11-65 1230		4,260	7.8 8.0	Dieldrin = 85 DDE = 25 ppDDT = 35	
PAJARO RIVER NEAR CHITTENDEN	77	9-1-65 1230	5.0	1,380	$\frac{8.0}{8.0}$	BHC = 2 ppDDE = 2 Dieldrin = 1 ppDDD = 7	ppDDD = 5
SALINAS RIVER MILE 3.50	262	1-11-65 1650		362	7.6	ppDDT = 10	
SALINAS RIVER NEAR SPRECKELS	43	9-1-65 0700	2.0	937	7.5	Lindane = 5 Dieldrin = 13 ppDDT = 18	ppDDE = 4 Dieldrin = 5 ppDDD = 9
SAN LORENZO RIVER AT BIG TREES	75	9-7-65 1000	20	366	7.8 8.1	Dieldrin = 1	No pesticide detected
SANTA CRUZ PIER	120	9=7=65 0802			8.4	ppDDD = 1	
SOUTH BAY AQUEDUCT BETNANY FOREBAY AT SOUTH BAY PUMPING PLANT	207	12 -1- 64 1000		571	8.1	BNC = 1	
	207	12-30-64 1645		580		BHC = 1	
	207	2-9-65 1815		569	9.3	No pesticide detected	
	207	3-2-65 1000		584	8.3	Aldrin = 2 Dieldrin = 3 ppDDT = 22	
	207	4-1-65 1630		554	8.3	ppDDD = 2	
	207	5 -1 1-65 1000		474	8.1	Dieldrin = 2	
	207	6-1-65 1000		338	8.0	BHC = 1 Lindane = 1 Dieldrin = 1 ppDDD = 2	
	207	8-3-65 1345		359	8.0	Dieldrin = 3 ppDDD = 2	

Appendix E

GROUND WATER QUALITY

quali Coast In so upper of tì trati adju cont the Meth Reso Veci the rep <u>nil</u> Iet in det Cod sys 201

INTRODUCTION

Data presented in this appendix are measured values of selected quality characteristics of ground water samples collected in the Central Coastal Area during the period from July 1, 1964, through September 30, 1965. In subsequent reports, the period used will be the water year.

Plates 4 and 5 present the status of sea-water intrusion into the upper aquifer of the East Bay area of the Santa Clara Valley and two aquifers of the Salinas Valley, respectively. The lines depicting chloride concentrations in 1962, previously published in Bulletins 130-63 and 130-64, were adjusted for this report. The adjustments were made on the basis of additional controls available in 1965, and were made in order to more accurately depict the relative movement of chloride concentrations.

Methods and Procedures

Laboratory analyses were performed by the Department of Water Resources and the U. S. Geological Survey, all in accordance with "Standard Methods for the Examination of Water and Waste Water", 11th Edition, or with the U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The methods yield comparable accuracy.

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Total dissolved solids reported were determined by gravimetric determination at 180°C. Values for temperature are those measured in the field at the time of sampling. Heavy metal concentrations were determined by "wet" analyses.

Coding

Wells and ground water basins are numbered in accordance with the system described in Appendix C. The data are presented in water pollution control board region, ground water basin and well number order.

-187-

EXPLANATION OF TABLES

Definitions of abbreviations used in this appendix and not given on the tables are as follows:

ABS	 Alkyl benzene sulfonate
A1	 Aluminum
As	 Arsenic
С	 Celsius (Centigrade)
Cr ⁺⁶	 Hexavalent chromium
Cu	 Copper
diss	 dissolved
dom	 domestic
DPH	 Department of Public Health
DWR	 Department of Water Resources
F	 Fahrenheit
Fe	 Iron
ind	 industrial
irr	 irrigation
Mn	 Manganese
N.C.	 Non-Carbonate
рH	 The negative logarithm of the effective hydrogen ion concentration
ppm	 parts per million
Se	 Selenium
Temp	 Temperature
USGS	 U. S. Geological Survey
Zn	 Zinc

that fo

Analyse

Radioa

lected were t

Analyses of Ground Water

en

Table E-1 presents analyses of ground water in the same order as that for ground water level data in Appendix C.

Radioassays of Ground Water

Table E-2 presents the radioactivity of ground water samples collected from two wells in the Santa Clara Valley. The methods and procedures were the same as discussed under "Radioassays of Surface Water" in Appendix D.

	pez.																							
	Analyzad by					DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
seup		DD N.C.	_			0		25	32	0		7	4	0		0		0	0	0		0		
		Total ppm				277		136	132	148		103	109	111		138		135	136	111		138		
l	cent sod	5 F				24		13	12	19		15		15		32		27	27	35		37		
Total	dis- solved					402		184		212		137		146		243		207		184		246		
	0 Other constituents	(SiO ₂) Other constituents																						
	Silice	(SiO							1	-	5	6	61	2		1	1	0	0	0	0	0	-1	
on illion	Boron					0.8	0.8	0.6	0.1	2.1	2.4	0.2	0,2	0.7	0.6	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	
ports per million equivalents per million		e (L) (S)						10		1		101		110				101		101				
ports p valents	z	(NO ₃)				0.6		22 0.35		0.01		1.0 0.02		3.3		0.5		<u>1.0</u> 0.02		1.0 0.02		0.01		
- inbe	Chio-	C:)				6.8 0.19		6.0 0.17	$\frac{6.7}{0.19}$	<u>15</u> 0.42		$\frac{7.0}{0.20}$	<u>5.8</u> 0.16	4.0 0.11		21 0.59		26 0.73	25 0.70	$\frac{16}{0.45}$	<u>15</u> 0.42	7.0		
îs in		101a (SO ₄)		a		$\frac{55}{1.14}$		<u>17</u> 0.35		<u>6.1</u> 0.13		$\frac{6.6}{0.14}$		7.9		0.01		$\frac{1.8}{0.04}$		0.6		<u>5.4</u> 0.11		
Mineral constituents	Bicar-	bonota (HCO ₃)		(No. 1	-15)	<u>361</u> 5.92		$\frac{135}{2.21}$	<u>122</u> 2.00	<u>185</u> 3.03		<u>125</u> 2.05		$\frac{140}{2.29}$		<u>203</u> 3.33		<u>175</u> 2.87	<u>176</u> 2.88	<u>180</u> 2.95		<u>244</u>		
eral co	arbon-	cte (CO ₃)		LECION	X (1	0.00		0.00	0.00	0.00		0.00		0.00		4 0.13		0.00	0.00	0.00		0.00		
Mine	Potas-C	(K) (CO ₃)		ASTAL R	UKLAH VALLEY (1-15)	2.1		<u>1.0</u>		0.01		1.1		1.0		0.02		0.6		0.02		<u>1.0</u> 0.02		
	Sodium	(DN)		NORTH COASTAL REGION (No.	NKIA	40 1.74		9.2 0.40	<u>8.8</u> 0.38	16 0.70		8.4	<u>9.2</u> 0.40	9.2 0.40		30		23 1.00	$\frac{23}{1.00}$	28 1.22		<u>38</u> 1.65		
		(Mg)				24 1.99		$\frac{22}{1.77}$	$\frac{21}{1.73}$	2 <u>3</u> 1.86		12 0,96	$\frac{14}{1.15}$	13 1.07		$\frac{14}{1.16}$		$\frac{19}{1.60}$	20	$\frac{17}{1.42}$		<u>18</u> 1.46		
		(C a)				71		<u>19</u> 0.95	18 0.90	22 1.10		22 1.10	21 1.05	<u>23</u> 1.15		32 1.60		22 1.10	21 1.05	16 0.80		26 1.30		
	H					7.7		7.2	7.8	7.1		7.0	7.7	7.2		8.4		7.4	8.1	7.2		7.7		
Specific Conduct-	once (micro-	at 25° C)				665	646	314	305	358	350	243	255	257	265	404	402	362	376	335	323	417	408	
	Temp in °F																							
	Oote sompled					8-18-64	9-22-65	8-8-64	9-22-65	8-18-64	9-29-65	8-18-64	9- 22-65	8-18-64	9-22-65	8=18-64	9-22-65	8-19-64	9-20-65	8-19-64	9=20-65	8-19-64	9-20-65	
Stote well	number ond other number					14N/12W-5K1		14N/12W-11NI		14N/12W-26K1		15N/12W-16E1		15N/12W-21H1		15N/12W-35D1		16N/12W-5D1		16N/12W-5D2		16N/12W-9Q1		
	Owner and	- 29 5				G. C. Gilley domaatic		L. Johnson domestic		M. Mehtonen domeetic		City of Ukiah municipal		Regiaa Weter Co. municipal		D. Broggi domentic & Irritation		F. Brown domestic		F. Srown irrisation	2	Pacific Gan & Electric Co.	domestic & industrial	

	-					-																
	Anołyzed by	;		DHR	DWR	DWR		DWR	DWR	DWR	DWR	DAR	194 <u>1</u>	DHR	DAR	DWR	DHR	DwR	DHR	DMR.	Di-TR	
Hordness	003	D.C.		0	10	12		ø		4	9	0		0			0					
Hord	05 C	Totol ppm		121	76	78		184		142	182	84		149			16					
Par -	cent.	Ē		86	21	22		11		12	12	20		19			22		_			
Totol	solved	u ppros		1280	140			215		162		121		193			124					
		(SiO2) Other constituents																				
lion		(8)		63	0.0	0.0		0.2	0.3	0.2	0.2	0.3	1.1	2.4	2.2	0.8	0.6	1.0	0.4	1.2	2.8	
millo	Fluo~	(F)																				
volents per million	ž	trote (NO ₃)		0.9	$\frac{11}{0.18}$			1.0 0.02		<u>1.5</u> 0.02		$\frac{1.6}{0.02}$		3.4	$\frac{6.6}{0.11}$		2.1 0.03					
equivolents per million	Chio-	(CI)		<u>518</u> 14.61	6.5 0.18	<u>6.6</u> 0.19		5.8 0.16		<u>5.7</u> 0.16	6.6 0.19	<u>5.0</u> 0.14		10 0.28	<u>8.7</u> 0.24		<u>6,0</u> 0,17					
nts in		fate (S0 ₄)		$\frac{0.3}{0.01}$	$\frac{11}{0.23}$			17	_	12 0.25		$\frac{7.9}{0.16}$		12 0.25			<u>10</u> 0.21					
Minerol constituents	Bicor-	bonote (HCO ₃)	(Cont.	3.77	80 1.31	$\frac{80}{1.31}$	16)	3.56		<u>169</u> 2.77	<u>215</u> 3.52	$\frac{108}{1.77}$		<u>187</u> 3.06			$\frac{117}{1.92}$					
erol co	orbon-	co ₃)	(1-15)	0.00	0.00	0.00	((1-	0.00		0.00	0.00	0.00		0.00			0,00					
Min	Potos-C	(K) (CO ₃) (TLEY	1.0	$\frac{0.4}{0.01}$		SANEL VALLEY (1-16)	1.4		0.01		$\frac{1.2}{0.03}$		1.0			$\frac{1.1}{0.03}$					
	Codine	(oN)	UKLAH VALLEY (1-15) (Cont.)	<u>357</u> 15.58	$\frac{9.4}{0.41}$	9.8 0.43	SANE	11 0.48		9.2 0.40	$\frac{11}{0.48}$	$\frac{10}{0.43}$		16 0.70			12 0.52					
	Mogne -	(BW)		7.5 0.62	$\frac{9.4}{0.77}$	9.8 0.81		$\frac{21}{1.73}$		$\frac{23}{1.89}$	30	<u>9.5</u> 0.78		22 1.78			10 0.87					
	Colorism	(Co)		36 1.80	15 0.75	<u>15</u> 0.75		<u>39</u> 1.95		19 0.95	$\frac{24}{1.20}$	18 0.90		$\frac{24}{1.20}$			19					
	Hd			8.0	6.9	6.7		7.8		7.1	8.0	7.3		7.1			7.1					
Specific conduct-	once (micro-	mhos of 25° C)		1940	207	208		393	386	308	700	228		359	351		220		205			
	Temp											64				68		62		71	65	
	Oate somoled			8-19-64	8-19-64	9-20-65		8-18-64	9-29-65	8-18-64	9-29-65	6~23-65	6-23-65	8-18-64	9-29-65	6-23-65	8-18-64	6-23-65	9-29-65	6-23-65	6-23-65	
State well	number and other number			17N/12W-18A1	17N/12W-28M1			12N/11W-2F1		13N/11W-7D1		13N/11W=7L1	13N/11W-1882	13N/11W-1881		13N/11W-18D2	13N/11W-18D1			13N/11W-18E2	13N/11W-18E1	
	Owner and	u se		J. E. Nelson domestic	H. Mathewe domestic			A. DeMarcentonio		Z. F. Nawn trrfoarlon	0	J. N. Pomroy Co. irrigation	A. Damiano unused	A. Damiano irrioation		J. H. Pomroy Co. domeetic	J. H. Pomroy Co.	*** *64 **01		I. J. Milovina domestic	A. Damiano domentic	

	P		 																		
	Analyzed	5		DWR	DWR	DWR	DWR	DWR	DWR	DVR	DWR		USGS	DWR	USGS	USGS	DWR	USGS	DWR	USGS	DWR
Iness	as CoCO ₃	N.C PPM		11		90	20		14	14	21		0		ŝ	0	29	0		2	14
		Total		108		126	154		128	163	171		12		141	274	286	144		52	20
i	Cent Sod-	Ê.		14		14	11		6	13	1		76		11	00		11		37	
Totol	solved			142		164	185		103	1915			425		154	325	_	194		130	
		(SiO ₂) Other constituents											Fe: 0.02 (Dis.)		Fe: 0.02 (Dis.)	Fe: 0.01 (Dis.)		Fe: 0.02 (Dis.)		Fe: 0.01 (Dis.)	
	n Silic	(SiO	 																		
lon hillion		(B)		0.6	1.6	0.3	0.3	0.3	0.0	0.2	0.2		0.3	0.4	0.4	0.5	0.1	0.4	0.4	0.1	0.0
ports per million equivalents per million	- Fluo	6 ride	 	1.5		10	101		100	10			10	0.05		10		10		101	
ports		(NO ₃)	 	$\frac{8.6}{0.14}$		3.2	<u>1.6</u> 0.02		5.2	4.6			0.00		0.00	$\frac{13}{0.21}$		0.00		$\frac{14}{0.23}$	
nbe	Chlo-	(CI)		<u>5.0</u> 0.14		<u>5.5</u> 0.16	7.9		$\frac{4.4}{0.12}$	8.5	$\frac{7.6}{0.21}$		$\frac{36}{1.02}$		<u>4.5</u> 0.13	$\frac{7.0}{0.20}$	<u>8.6</u> 0.24	4.2 0.12		$\frac{17}{0.48}$	0.48
u s		fate (S0 ₄)	ont.)	$\frac{9.9}{0.21}$		$\frac{13}{0.27}$	26		$\frac{9.7}{0.20}$	19			<u>1.0</u> 0.02		$\frac{13}{0.27}$	<u>16</u> 0.33		0.02		0.02	
Mineral constituents	Bicor-	bonote (HCO ₃)	SANEL VALLEY (1-16) (dont.)	$\frac{118}{1.94}$		144	$\frac{163}{2.67}$		$\frac{141}{2.31}$	<u>182</u> 2.98	3.00	(1-17)	306		150	275	284	2.95		55 0.90	54 0.88
eral co	Carbon-	ote (CO ₃)	EY (1.	0,00		0.00	0.00		0.00	0,00	0.00	ALLEY	0,00		8 0.27	<u>16</u> 0.53	$\frac{14}{0.47}$	0.00		0.00	0.00
n N	Potos-0	(K) (CO ₃) (CL VAL	$\frac{1.2}{0.03}$		1.3	0.02		0.02	$\frac{1.2}{0.03}$		ALEXANDER VALLEY	<u>5.4</u> 0.14		1.2	0.4		0.9		0.02	
	Sodium		SAN	8.2 0.36		10 0.43	9.0 0.39		<u>5.7</u> 0.25	11 0.48	$\frac{10}{0.44}$	ALEX	<u>132</u> 5.74	<u>135</u> 5.87	8.5	11 0.48	<u>13</u> 0.56	<u>8.5</u> 0.37		14 0.61	<u>16</u> 0.70
		(M9)		$\frac{13}{1.11}$		<u>15</u> 1,22	20		<u>20</u> 1,66	23	$\frac{24}{1.97}$		1.3		1.12	<u>53</u> 4.38	<u>52</u> 4.26	$\frac{18}{1,48}$		6.0 0.49	7.4
	Colcium	(C 0)		21 1.05		$\frac{26}{1.30}$	28		18 0,90	28 1.40	$\frac{29}{1.45}$		2.6 0.13		$\frac{34}{1.70}$	$\frac{22}{1.10}$	$\frac{29}{1.45}$	28 1.40		11 0.55	0.55
	Hd			7.2		7.0	7.5		7.2	7 + 1	6.9		7.6		8.5	8.5	8.7	7.7		6.6	7.0
Specific conduct-	ance (micro-	mhos of 25° C)		267		302	336	309	284	357	391		583	570	292	527	563	305	277	194	192
	Temp In °F		_	19		64			63												
	Dote sampied			6-23-65	6-23-65	6-22-65	8-18-64	9-30-65	6-23-65	8-18-64	9-29-65		9-23-64	8-3-65	9-23-64	9-23-64	8-3-65	9-23-64	8-3-65	9~23-64	8-3-65
Stota well	number and other number			13N/11W-18J1	13N/11W-19C2	13N/11W-19H1	13N/11W-19N1		13N/11W-19P1	13N/11W-30H1			9N/8W-7Q1		10N/9W-18R1	10N/9W-26L1		11N/10W-28NL		11N/10W-33G1	
	Owner and	USE		 J. Milovina irrigation 	J. Rongo gardeníng	J. L. Haas domestic	Hopland Public Utility District	municipal	C. Ashurst	Grace Ranch irrigation, domeatic	and stock		Redwood Hereford Ranch	irrigation & domeatic	H. B. Remmel irrigation	W. D. Dane irrigation		Italian Swies Colony irrigation & domestic		C. Pellegrini domestic	

	Anglyzed by			USGS	DVR	US(DwR	DWR	USGS	DWR	DirR	5)S, J	IMR	DWR	DWR	USGS	DHR	USGS	DHR
Hardness	co.ª	D R C		0		48		0	0	0		0	0	0		4.5	07	0	
Hard	as Co	Tata I ppm		248		160		72	134	86		80	80	162		107	163	114	
Der .	cent sod-	Ę		31		19		6.4	21	27		36				26	27	63	
Total	solved			441		302		232	236	189		205				366		366	
	Silica	(SiO2) Other constituents		Fe: 0.01 (Dis.)		Fe: 0.03 (Dis.)			Fe: 0.01 (Die.)		_	Fe: 0.07 (Dim.)				Fe: 0.05 (Dis.)		Fe: 0.08 (Dis.)	
Ion	Boron	(B)		0.2		0.1		0.0	0.0	0.0		0.0	0.0	0.5		0.0	0.0	0.3	0.3
er millan		(F)													0.02				
parts per millian equivalents per millian	- IN	(NO ₃)		$\frac{13}{0.21}$	$\frac{26}{0.42}$	21	30	0.01	3.1	0.00		0.8				36 0.58		$\frac{1.8}{0.03}$	
equiva	Chio-	(CI)		47 1.33	<u>50</u> 1,41	44 1.24	$\frac{47}{1,32}$	<u>38</u> 1.07	$\frac{12}{0.34}$	5.8 0.16		4.5 0.13	4.6 0.13	<u>20</u> 0.56		49 1.38	$\frac{47}{1.32}$	<u>18</u> 0.51	
.c	Sul -	fate (S0 ₄)		28 0.58		8.0		5.4 0.11	16 0.33	0.0		0.00				5.0		<u>1.0</u> 0.02	
Mineral constituents	Bicar-	banats (HCO ₃)	(1-18)	$\frac{244}{4,00}$		<u>128</u> 2.10		1.79	2.44	133		$\frac{138}{2.26}$	$\frac{142}{2.33}$	<u>283</u> 4.64		139	$\frac{150}{2,46}$	346	
eral co	Carban-	sium ate t (K) (CO ₃) (ROSA VALLEY (1-18)	$\frac{37}{1,23}$		4 0.13		0.00	8 0.27	2 0.07		50.17	30.10	6 0.20		50.17	0.00	0.00	
Ň	Potas - C	eium (X)	ROSA VI	$\tfrac{1.3}{0.03}$		0.04		1.8	0.03	0.05		$\frac{4.1}{0.10}$				5.3		2.4	
	Sadium		SANTA	<u>52</u> 2.26	2.48	<u>18</u> 0.78	$\frac{21}{0.91}$	33	0.74	15 0.65		22 0.96	22 0.96	48 2.09		28 1.22	$\frac{28}{1,22}$	<u>90</u> 3.92	96 4.18
	- augon	(Mg)		40 3.26		3.20		<u>8.4</u> 0.69	24 1.98	<u>12</u> 0.97		1.00	11 0.90	20		$\frac{21}{1,74}$	25 2,06	2.28	
	alcium	(Ca) (Mg)		$\frac{34}{1.70}$		0.00		<u>15</u> 0.75	14 0.70	15		<u>12</u> 0.60	$\frac{14}{0.70}$	<u>31</u> 1.55		32	$\frac{24}{1.20}$	0.00	
	Ha			8.7		8.3		8.3	8.5	8.4		8.4	8.4	8.5		8.4	8.0	7.4	
Specific canduct-	ance (micra-	mhas at 25° C)		678	770	422	458	327	336	225	226	250	250	525	506	614	503	584	574
	Temp in °F																		
	Dote samp!sd			9-22-64	8-5-65	9-23-64	8-4-65	9-22-64	9-24-64	9-24-64	8=4=65	9-24-64	8-4-65	8-4-65	8-4-65	9=24=64	8-4-65	9-24-64	8-4-65
State well	number and ather number			6N/7W+18R1		6N/8W-381		6N/8W-35A2	6N/9W-2G1	7N/6W=29P1		7N/7W~15C1		7N/7W+29D1	7N/8W-3L1	7N/8W-5G1		7N/8W#18Q1	
	Owner and	LSO		J. J. Wileon domestic & stock		G. Mallory domestic		Coteti Public Utility Dietrict municipel	City of Sebestopol Weter Depertment municipel	Kenwood Fire Dept. domeetic & municipal		D. S. Moore irrigation & domeetic		E. F. Sethards irrigation	W. E. Samuelson domestic	C. Bordesse domestic		H. Raemuesen irrigation	

r												
	Analyzed by		00001	nsc s	DWR	USGS	DWR	SDSU	DWR	DWR	DWR	cscs
1855	N.C.		00,	130		109	0	0	0		0	c
Hard	as CaCO ₃ Tatal N.C. Ppm ppm		100	567		109	110	05	43		153	25
	sod- sod- ium			ŝ		41	42	41	43			я
Total	salvad solids in ppm		0.12	Nac		252		151				202
	luents		(- M) (0 0 - 3	Ols.)		Fe: 0.02 (Dis.)		Fe: 1.26 (Dis.)				Fe: 0.01 (Dis.)
	Silica (SiO2) Other constituents		- CO 0	70*0		0.02 (1.26 (0.01 (
	Other		1	Le.		Fe:		Fe:				1) 1) [4]
	Silica (SiO ₂											
llion	Boran (B)		-	1.0	0.1	0.0	0.1	0.0	0.0		0.2	0.0
per mi	Ftud- ride (F)											
parts per millan valents per mill	NI- F trote (NO ₃)		5	0.50	1.71	0.01		<u>0.5</u> 0.01				<u>0.05</u>
parts per million equivalents per million	Chio- rida (CI)	-	70	2.71	<u>124</u> 3.50	$\frac{14}{0.39}$	$\frac{16}{0.45}$	$\frac{11}{0.31}$	$\frac{12}{0.34}$		$\frac{31}{0.87}$	0.59
č	Sul - fate (SO4)		7	1, 25		$\frac{1.0}{0.02}$		7.0 0.15				0.10 0.10
Minerai canstituents in		(1-18) (Cont)	1 5 3	2.49		<u>175</u> 2.87	<u>198</u> 3.24	<u>58</u> 0.95	<u>58</u> 0.95		248 4.06	$\frac{93}{1.52}$
rai car	Patas-Carban-Bicar- sium ate bonata (K) (CO ₃) (HCO ₃)	(81-1)		0.80		14 0.47	0.00	0.00	0.00		$\frac{3}{0.10}$	0.00
Mine	atas-C sium (K) (1 1 1 1	1 5	0.04		<u>1.6</u> 0.04		$\frac{12}{0.03}$				<u>0.07</u>
	Sadium (Na)	CANTA DOCA UATTEV	A 1000 17	1.96	$\frac{61}{2.65}$	36 1.57	36 1.57	<u>13</u> 0.57	<u>15</u> 0.65		<u>52</u> 2.26	0.70
		C ANIT	171000	3.38		2.18	$\frac{14}{1.15}$	4.4 0.36	4.4 0.36		23	00.00 00.00
	Calcium Magne- (Ca) (Mg)			2.50		0.00	21 1.05	8.8 4	0.50 4		23 1.15	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	PH Col			2]		8.6	7.3	7.8	8.0		8.4	8
Specific canduct-	ance (micra- mhas at 25° C)			06/	1020	351 8	378 7	156 7	158 8	392	54.5 8	540
Spe	Temp in °F (m m at 2	-	-	-	10	en 	сл.	-	1	n	νή.	8
<u> </u>				3		4		7				4
	Date sampled		7 66 0	70-C7-K	8-4-65	9-24-64	8-4-65	9-24-64	8-4-65	8-4-65	8~3=65	9-24-64
118	nber		10	1,		MI				IW	01	10
State well	ather number		06 110/116	/N/8M-30P1		IMEE=M8/NL		136-W9/N7		7N/9W-36M1	8N/8W=20Q1	AN 944
	Ownar and use			C. Dotti irrigation & stock		A. Marx domestic & irrigation		C. W. Gilbert domeatic		Sebastopol Meat Co. industrial & irr.	H. A. Faught irrigation	Redwood Ranch, Inc. irrigation
			-					_	_			

	Anolyzed by			DWR	DAR	DWR	DWR	DWR	DHR	DWR	DHR	DWR	DWR	TM-R	DWR	0WR	DHR	DWR	DirR
ŝŝ				0	24.21	0							0		0		0		0
Hardne	as CaCO ₃ Tatal NC PPm PPm			207	3100 2	266							478		380		100		206
100	sod-					73					-		29	-	81	-	83	_	
Tatal	solved solved solids in ppm				7760		127				368				2384				
	Silica (SiO ₂) Other constituents																		
c	Boron Silii (B) (Si			0.3	0.4	0.2							2.0		2.0		1.0		0.8
milia				0.01	0.01	0.01							0.01		0.02		0.01		0.01
parts per milian ivalents per mili	NI- frote (NO ₃) (F)			7 0.11 0	0.00	0.18 0							<u>33</u> 0.5300		0.00		0.00		0.02
squivalents per million	Chio- ride (CI) (N			4.27 0	119.60 0	364 10,25	18 0.51	.52	50	70	70	44 1.24	<u>53</u> 1.51 0	886 24.99	975 0	<u>152</u> 4.29	166 4.67 0	34 0.96	163 4.59 0
	Sul - Ch fote (SO ₄) ((0.10	40 0.85 119		0	1-			1-	~1		24		4	0.53 4	0	
uents in		No. 2)	6			56 0.07							<u>35</u> 48 0.72		28 240 28 4.99				0.32
constit	Carban- Bicar- ats banate (CO ₃) (HCO ₃)	CION (P	(3-1.00	0 9,69	0 829 13.58	0 9.66							0 10.48		0 8.28		0 0.47		8 7.01
Mineral constituents	Potas - Corbon- 1 sium ots (K) (CO ₃) (BAY RE	PETALUMA VALLEY (2-1.00)	5 0.00	50 0.00	<u>3.7</u> 0.00			_		_		0.01 0.00		5 0.13 0.00		0.03 0.00		0.06 0.18
		NCLSCO	LUPA V									-							
	Sodium (No)	SAN FRANCISCO BÀY RECION (No.	PETA	$\tfrac{232}{10.10}$	$\tfrac{1660}{72.00}$	340							<u> 90</u> 3.90		760		<u>225</u> 9.80		180 7.83
	Calcium Magne - (Ca) (Mg)			$\frac{31}{2.56}$	<u>535</u> 44.00	$\frac{41}{3.42}$							$\frac{74}{6.13}$		4.4		$\frac{11}{0.94}$		26 2.14
	Calcium (Ca)			32	361 18.00	38 1.90							69 3.44		80		21		40
	H			8.2	7.8	7.9							7.9		8.2		8.1		8.4
Specific conduct-	oncs (micro- mhos of 25° C)			1200	11000	1900	184	651	615	929	629	1130	1110	4020	3750	1120	1160	584	1120
	Terp in °F																		
	001s sompled			3-65	3-65	3-65	8-5-65	9-22-64	8-5-65	9-22-64	8-5-65	9-64	3-65	9-64	3-65	9-64	3=65	9-64	3-65
State well	number and ather number			3N/6W-1Q1	3N/6W-3C1	3N/6W-1181	3N/6W-15M1	3N/6W-18M1		3N/7W-14F1		4N/6W-7H1		4N/6W-7H2		4N/6W-21Q1		4N/6W-27R1	
	Owner and use			H. Clokie domestic & stock	0, White domestic & irrigation	S. K. Herzog Co. domestic & stock	C. Strozzi stock	Rupprecht dom., irr., & stock		K. Johnson domestic		Lopes domestic		Lopes irrigetion		L. A. Bourke domestic & stock		S. K. Merzog Co. stock	

_	WATER
1	Q
ш	GROUN
ш	Ш
	ЧO
Ξ	0
۷	ŝ
F	ANALYSES
	5
	AN
	~

	0							_											
	Anoiyzed by		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	USGS	DWR		DWR	DWR	DWR	
ness	as CaCO ₃ Total N.C ppm ppm		2160		8728		103			356		0	13	27					
			2595		8820		475			543		35	207	276					
	dis - cent solved cent salids ium in ppm ium		67								_		27			_			
Totol			6460		19760	_							373						
	Silico (SiO ₂) Other constituents			_									Fe: 0.03 (Dis.)						
	Boron Sti (B) (Si		0.2		0.8		0.3			0.0		0,1	0.1	0.0		0.2	0.2	0.1	
miltion	F) B		$\frac{0.1}{0.01}$		<u>0.1</u> 0.01		0.01			0.2		0.01		0.1 0.01					
parts per million squivalents per million	NI- Fluo- trate rids (NO ₃) (F)		0.05		0.00		0.00			81 0		0.02	<u>12</u> 0,19	0.26		14 0.22	<u>12</u> 0.19	50 0.81	
part quivalei	Chio- ride (CI)		<u>3347</u> 000	40	<u>10014</u> 282.40	176 4.96	167 4.70	141 3.98	<u>310</u> 8.74	<u>345</u> 9.73	66 1.86	2.13 0	43 1.21 0	<u>57</u> 1.59 0		148 4.18 0	144 4.06 0	158 4.46	
				9550 269.40		4.		3.	<u>31</u> 8.		-1 					14.	<u>14</u>	4.	
nts in	- Sul - fote (SO ₄)	nt.)	8 0.17		22,20		3.27			44		0.37	20	32					
onstitue	Carban-Bicar- ate bonate (CO 3) (HCO 3)	0) (Co	<u>531</u> 8.70		$\tfrac{113}{1.85}$		4397.20			228		388	236 3.87	304	2.01)				
Minerol constituents in	Potas - Carban- sum ate (K) (C0 3) ((2-1.0	0.00		0.00		$\frac{7.2}{0.24}$			0.00		25.8	0.00	0.00	NAPA VALLEY (2-2.01)				
Ŵ	Potas - stum (K)	ALLEY	$\frac{21}{0.56}$		$\frac{40}{1.02}$		2.3			2 0.05		1.5	3.3	3 0.08	A VALL				
	Sodium (Na)	PETALUMA VALLEY (2-1.00) (Cont.)	1140		$\frac{3010}{131.00}$		<u>137</u> 5.95			<u>115</u> 5.00		$\frac{210}{9.13}$	$\frac{36}{1.57}$	$\frac{41}{1.80}$	NAF	$\frac{91}{3.96}$	$\frac{91}{3.96}$	<u>103</u> 4,48	
	Magne - s:um (Mg)	G)	438		<u>1920</u> 158.00		<u>50</u> 4.06			32		$\frac{4}{0.32}$	<u>34</u> 2.79	32					
	Calcium (Ca)		<u>319</u> 15.90		<u>369</u> 18.40		<u>109</u> 5.44	-		<u>166</u> 8.28		8 0.38	<u>27</u> 1.35	<u>58</u> 2.89					
	H		7.7		7.4		8.3			7.8		8.7	8,2	7.9					
Spacific conduct-	once (micro- mhos at 25° C)		8300	23900	21000	1510	1450	902	1620	1550	867	8 20	559	660		1170	1110	1380	
	Temp in °F												_						
	Oate sampled		3-65	9-2-64	3-65	9-2-64	3-65	9-2-64	9-2-64	3-65	9-2-64	3-65	9-64	3-65		9-22-64	8-5-65	9-22-64	
Stote well	number ond ather number		4N/6W=33R1	4N/7W-2D1		SN/6W-3001		5N/7W~803	5N/7W~20L3		5N/7W-34E2		SN/7W-35K1			3N/3W-18G1		3N/3W-18G2	
	Owner and use		0. White irrigation & stock	Union 011 Co. industrial		G, Mylee domeatic & stock		N. J. Matzen domestic	Al's Barber Shop domestic		H. E. Clærk dom., irr., & stock		R, H. Sartori irrigation			E. P. Nunn domestic		D. L. Pickens domestic	

_	WATER
BLE E-	OF GROUND
TA	ANALYSES

	Anolyzsd by		DWR	124 <u>3</u>	DWR	DWR	DWR	DWR	DHR	DWR	DWR	DAR	DAR	DWR	DWR	DAR	DWR	DWR	DAR N
Hardness	as CoCO ₃ Total NC ppm ppm									_	_		-						-
Par -	sod-												_						
Totol	solids con- solids con- in ppm																		
	Silico (SiO ₂) Other constituents																		
	Boron Sil (B) (Si		0.2	0.2	0.1	0.0			0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.0	2.3	2.3
millio	Fluo- Bo ride ((-	-	-	-	
valents per mill	N) - F) trate (NO ₃) (F				-														
equivalents per million			95 2.68	510	20	33	12	2/1	12	86	50	<u>101</u> 2.85	8	22	8	$\frac{41}{1.16}$	40 1.13	6	18
le I	Chio- ride (Ci)		2.9	<u>93</u> 2.62	<u>27</u> 0.76	0.73	87 2.45	91 2.57	$\frac{146}{4.12}$	3.86	92 2.60	2.2	<u>392</u> 11.06	<u>327</u> 9.22	<u>318</u> 8.97	1.	1.	109 3.07	3.78
Mineral constituents in	- Sul - fote (SO ₄)	-4			_					_		_							
onstitue	Potas-Carbon-Bicor- sium ofe bonore (K) (CO 3) (HCO 3)	(Cont																$\frac{227}{3.72}$	
neral c	Corbon- ote (CO 3)	2-2.01																0.00	
ž	Potas - sium (K)	EX C																	
	Sodium (No)	NAPA VALLEY (2-2.01) (Cont.)	<u>57</u> 2.48	<u>59</u> 2.57	43	$\frac{38}{1.65}$			<u>82</u> 3.57	3.04	68 2.96	$\frac{74}{3.22}$	<u>220</u> 9.57	$\frac{142}{6.18}$	$\frac{148}{6.44}$	60 2.61	$\frac{60}{2,61}$	$\frac{120}{5.22}$	<u>120</u> 5.22
	Colcium Mogne - (Co) (Mg)												-						
	(Co)																		
	F																	 00	
Specific conduct-	once (micro- mhos of 25° C)		803	1810	313	268	752	711	721	773	799	840	2270	1570	1570	512	521	714	728
0, 0	Temp in °F																_		
	Dote sampled		9-25-64	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65
_			6	00	6	00	6	00	6	00	6	00	00	6	00	9	00	9	
Stote weli	number ond other number		4N/4W-2L1		4N/4W-5C1		4N/4W-5D2		4N/4W-7A1		4N/4W-12M1		4N/4W-13E1	4N/4W-14C2		5N/4W-9Q2		5N/4W=11F3	
	Owner and use		Neps County Airport domestic		N. Rhodes domestic		T. Raven domestic		Press Wireless domestic		P. Rogers domestic & stock		G. Lawrence domestic & stock	V. Bassham domeatic		M. L. George domestic		Silverado Motel domestic	

_	WATER
і ш	GROUND
ABL	ES OF
F	ANALYSES

	Analyzed by				DWR	DWR	DMR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DMR	DWR	DWR
0.65s	r 0	Edd																			
Hard	as Co	Edd					121														
	dis - Per- solved sod- solids ium	E																			
Tota		- +																			
	Silica Sc.0.) Other constituents		_																		
	Silico	22.0										.*			_		2		51		0
on	- Baran	<u>.</u>			0.1	0.1	0.1	0.1			0.5	0.4	0.7		0.1	0.0	0.2	0.1	0.2	0.4	0.0
parts per million equivalents per million	Ni- Flua- trate ride	E				_															
arts p	Ni-	(NO ₃													_	$\frac{17}{0.27}$		-			
aduiv	Chlo -	(CI)			$\frac{18}{0.51}$	$\frac{14}{0.39}$	45 1.27	33	188 5.30	$\frac{141}{3.98}$	417 11.76	$\frac{610}{17.21}$	$\frac{51}{1,44}$	18 0.51	34	$\frac{32}{0.90}$	$\frac{11}{0.31}$	0.31	7.4	12 0.34	8.5 0.24
ts in	Sul - fate		,	ŗ.																	
Mineral constituents in	Potas - Carbon- Bicar- eium ate bonate	(HCO ₃)		(2-2.01) (Lont.)			$\frac{193}{3.16}$														
ieral c	Carbon-	(co3)		7-7.01			30.10														
Mir	Potas -	(¥)		1																	
	Sodium	(DN)		NAPA VALLEY	<u>18</u> 0.78	<u>18</u> 0.78	48 2.09	46 2.00			422 18.36	462 20.10	<u>105</u> 4,57			<u>31</u> 1.35			36	$\frac{72}{3.13}$	$\frac{5.7}{0.25}$
	Calcium Magne-	(Mg)	_				-														
	alcium	(CO)											- 10 - 100								
\vdash	F						8.4														
Specific	once (mlcro-	of 25° C)			247	238	456	428	1080	804	2190	2630	738	362	442	419	393	364	249	395	102
	Temp in °F																				
	Oate sampled				9-25-64	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65	9-25-64	8-5-65	8-5-65	9=25-óú	9-25-64	8-5-65	9-24-64	8-5-65	9-24-64	8-5-65	9-24-64
State well	number and other number				5N/4W-14C1		5N/4W-15E1		5N/4W-20R2		5N/4W-21P2		5N/4W-22M1	5N/4W-26B1	5N/4W-29H1		6N/4W-6P1		6N/4W-15Q1		7N/4W-30L1
	Owner and use				P. A. Caeser domeetic & dairy		W, Bohen domeetic & irrigation	2	P. D. Looney domestic		J. G. Carr domeetic		Stewart'e Dairy stock	Adame & Forbes industrial	J. Flanagan domestic		C. L. Barber irrigation		A. R. Johnston domestic & stock		A. Fagtanî domestic

	Analyzed by		OVR	DHR	DHR		OWR	DWR	DHR	DHR	DWR	DMR	DWR	DWR	0HR	OWR	DWR	DAR	DWR
Hardness	N.C Ppm							0		0	0		0	-	34		0		0
								59		93	33		97		149		0.0		58
Per-	solved sod- in ppm ium							87		58	92		53		24		78		69
Tate																			
	Silica (SiO2) Other constituents																		
6	Boran Sit		0.4	0.0	11	-	0.1	0.2	0.7	0.9	4.8	1.2	0.8	0.0	0.0	0.1	1.4	1.2	1.4
r milli	Fiua - B ride (F)				-			0.2		0.02	0.01		0.01		0.01		0.01		0.6
valents per mill	NI- F trate (NO ₃)							0.00	0.6	0.00	0.00		0.00		<u>16</u> 0.26		1 0.02	-	0.00
squivalents per million	Chio- ride (CI)		$\frac{44}{1.24}$	4.4 0.12	<u>180</u> 5.08		<u>119</u> 3.36	3.63	25 0.70	<u>28</u> 0.81	<u>57</u> 1.60	23	26 0.72	<u>30</u> 0.85	42	68 1.92	170.47	77	78 2.19
- -	Sul - fate fate (SO ₄)							48 1.00		6 0.13	<u>10</u> 0.20		0.11		8 0.16		9 0.18		<u>5</u> 0.10
Ituents		Cont.)				02)		299 1		3.56	419 6.87		3.37		2.29	-	316 5.18		2.58
Mineral canstituents	Patas-Carbon-Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	(2-2.01) (Cont.)				SONOMA VALLEY (2-2.02)		0.00		0.00	0.28		0.00		0.00	-	16.8 0.56		0.00
Miner	atas - Ca sium (K) (C					VALLEY		3.7		0.05	0.04		0.04	_	0.04		0.03	-	0.42
	Sodium (Na)	NAPA VALLEY	28 1.22	<u>8.7</u> 0.38	<u>157</u> 6.83	SONOMA		<u>194</u> 8.43		61 2.65	<u>194</u> 8.34		51 2.20		22 0.95		<u>118</u> 5.13		79 3.43
	agne - S Mg)	N						70.58		1.02	2 0.20		1.10		1.44		10 0.78		5 0.40
	Calcium Magne- (Ca) (Mg)							0.60		0.84	97.0		0.85		<u>31</u> 1.54		0.59		0.76
	PH							8.2		8.1	9.6		8.1		8.0		8.7		6.7
Specific canduct-	ance (micro- mhos at 25° C)		069	128	880		974	076	455	420	820	432	390	366	380	517	600	509	480
ທີ່ບໍ	Temp in °F (r																		
	Oate sampled		8-5-65	8-5-65	8-5-65		8~30-64	3-65	8-30-64	3-65	3-65	8-30-64	3-65	8-30-64	3-65	8-30-64	3-65	9-30-64	3-65
State well	number and ather number		7N/5W-5A6	9N/6W-31Q1	9 <i>N/7</i> W-25N1		4N/5W-14D2		5N/5W-18D2		5N/5W-20R1	5N/6W~12F1		5N/6W-24K1		5N/6W~25P1		6N/6W-23M2	
	Owner and use		W. Wheeler domeatic & stock	J. Alcouffe domeetic & stock	R. Archerd domeetic		U. S. Nevy municipal		J. Firmingnec domestic		L. Miglioretti domestic	E. L. Smith domestic & stock		M. Kiser irrigation		Connolly domestic		N. Tarvid domestic	

_	WATER
1	0
ш	ROUN
ш	G
ВГ	ЧO
4	S
F	ANALYSE

	p			_		_													
	Anglyzad by		DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
15.55	as CaCO 3 Total N.C PPm ppm		0							0			21						
			17							198			215						
	sod-		87							79			56						
Totol	solvad solvad solids nin ppm																		
	Silica (SiO2) Other constituents																		
	Silico (SiO ₂																		
llion	Boron (B)		1.4		0.7	0.7	7.8	7.5	3.7	3.8	1.3	0.7	0.7	81	16	1.3	1.2	0.5	0.4
per m	Fluo- ride (F)		$\frac{1.0}{0.05}$																
parts per millon valents per mill	Ni - F trate (NO ₃)		0.00																
parts per million equivalents per million	Chlo- ride (Ci)		<u>55</u> 1.54		238	$\frac{246}{0.94}$	<u>181</u> 5.11	$\frac{173}{4,88}$	<u>313</u> 8.83	$\frac{262}{7.39}$	$\frac{272}{7.67}$	$\frac{152}{4.29}$	$\frac{150}{4.23}$	810 22,85	827 23 . 33	$\frac{70}{1.97}$	$\frac{63}{1.78}$	38	37 1.04
E S	Sul - fate (SO ₄)	3	5 0.10	()								-							
stituen	Bicor- onota HCO ₃)	(Con	$\frac{147}{2.42}$	(2-3.00)						426 6.98			237						
Mineral constituents	ofe t	(2-2.02) (Cont.)	0,00	ALLEY		-				36 1,20			0.00						
Mine	Potas - Carbon- Bicor- sium ofe bonota (K) (CO ₃) (HCO ₃)	LEY (8 0.21	N DIST.					-										
	Sodium (Na)	SONOMA VALLEY	83 3.60	SUISUN-FAIRFIELD VALLEY						<u>338</u> 14.70			125 5.44						
		20	0.10	SUIS						2,36 T			$\frac{24}{2.00}$						
	Calcium Magne - (Ca) (Mg)		<u>5</u> 0.24							32			46 2.30						
	PH Coli		8 2							8.8			7.9						
Specific conduct-	hos fcro- fcro- fos fcro-		420 8		1440	1430	1800	1800	1960	1750 8	1480	1010	667 7	3640	3650	1280	1380	373	358
Spe	Temp ance in °F (micro- mhos at 25° C)			-		-	1	-	1	-				e.	en				
					54		64	65	64	65	65	64	65	64	65	64	65	64	
	Dote sampied		3=65		9-24-64	9-21-65	9-24-64	9-21-65	9-24-64	9-21-65	9=21=05	9=24=64	9-21-65	9-24-64	9-21-65	9-24-64	9=22=65	9-24-64	9-22-65
State well	number and other number		6N/6W=26E1		3N/1E=481		3N/1E-21D1		3N/1E-22F2		3N/1E-22F3	4N/1E-8F1		4N/1W-33A1		4N/2W-4D1		4N/2W-5Q2	
	Owner and use		D. Stamos domestic		Taylor domentic		McDougal Livestock Co. stock		McDougal Livestock Co. domestic		McDougal Livestock Co. irrigetion 6 stock	G. Stewart domestic		Fish & tame Commission domestic		lleally domestic		Southern Pacific RR domestic	

ANALYSI & OF BROUND WATER

D

	1 ds CaCO3 Analyzed Tatel NC by ppm ppm			DWR	D4.R	EMR	DMR	DWR	DAR	DWR	D4.R	DWR	DWR	DAR	DAR	Durk	174R	DMR	DMR	DMR
si e	N C 3								47	155		52				0				
Hardne	Tatol Ppm	-							377	357		297			-	340	-			
	sod- ium T	+							38	50 3		39 2	-	-		34				
atal	solved sod- solved sod- ium																			_
	Silica (SiO2) Other constituents																			
	Silico (SiO	-																		
an	Boron (B)	Ļ		4.8	5.2	÷.0	0.6	0.7	0.6	0.6	7.0	0.3	1.2	1.3	1.0	1.0	2.0	2.1	1.7	1.5
parts per millian equivalents per million	Ni- Fluo- trate ride (NO ₃) (F)						_													
arts pi alents	ni- trate (NO ₃	ļ							_											
d adviv	Chia- ride (CI)			948 26.74	936 26.40	$\frac{133}{3+75}$	97 2.74	74	75	<u>334</u> 9.42	<u>118</u> 3.33	<u>134</u> 3.78	<u>55</u> 1.55	52 1.47	46	40	$\frac{132}{3.72}$	87	37	0.73
E	Sul - fore (SO ₄)		Cont.)																	
Minerai constituents in	Paras - Carbon- Bicar- sium ate bonate (K) (CO ₃) (HCO ₃)		-3.00) (403	230		262				448	-			
erai c(ate (CO3)		EY (3						0.00	80.27		18				12 0.40				
Ň	Patas - 0 sium (K)		D VALL																	
	Sodium (Na)		SUISUN-FAIRFIELD VALLEY (1-3.00) (Cont.)						105	163		86 3.74				80 3.48				
	- euto unu Mg)		-NUSIUS						33	28		$\frac{26}{2.14}$				3.20				
	Colcium Magne- sium (Ca) (Mg)								96 4.79	00 4.79		76 <u>3,79</u>				3.59				-
	Colo	-							7.8	8.5		8,6				8.5				
Specific canduct-	ance (micro- mhos of 25° C)	5		3510	3510	1140	1130	1030	1070 7	1480 8	889	928 8	1030	975	869	882 8	1800	1770	1190	1110
Spe	Temp ar			9	3	1	-		-				-				_	-		
	Date T sampled 1			9-24-64	9-22-45	9-24-64	9=22=65	9-24-64	9=22-65	9-21-65	9-24-64	9-21-65	9-24-64	9-21-65	9-24-64	9-22-65	9-24-64	9-22-65	9-24-64	9-22-65
State well	number and other number			4N/2W-9H1		4N/2W-18M1		4N/3W-13G2		5N/1W-25R1	5N/1W-28P1		5N/2W-21P3		5N/2W=27J4		5N/2W=34N1		5N/2W=34P4	
	Owner and use			F. Chadbourne atork		F. P. Smith domestic		D. R. Mangele trrivation	0	M. Peterson domestic	M. Peterson domeatic		P. Dodini	3	H. J. Beck domeatic		C. M. Bailard		L. Sing domentic	

	pez		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~		~	2
	Analyzed by		DWR	DWR	DWR	NWG	DWR	DWR	DWR	DWR	DWR	DWR	TWG	DWR	DWR	OWR	DWR		IMC	DWR
Hardness	PDm DDm		45	43	154		187	101		183		90	15	38		96			263	255
			278	266	396		443	432		480		188	209	122		304			642	589
Par	ting sod		18	20	33		22	24		17		53	15	39		42			4.6	53
Toto	- sol solids in ppm		357		708		617			648		408		237		734			1620	
	Silico (SiO2) Other constituents																			
	Silica (SiO2)																			
n Ilion	Baran (B)		0.4	0,3	0,3		0.4	0.4	1.0	0.3		0.4	0.2	0.1	1.2	0.4			0.9	0.8
parts per millon equivalents per million	Flug- ride (F)																			
arts pe plents	NI- trote (NO ₃)		$\tfrac{10}{0.16}$		$\frac{46}{0.74}$	$\frac{36}{0.58}$	$\frac{27}{0.44}$			$\frac{75}{1,23}$	42 0.68	$\frac{12}{0.19}$		0.00		49 0.79	<u>39</u> 0,63		29	
pyinbe	Chio - ride (CI)		<u>25</u> 0.70	$\frac{26}{0.73}$	$\frac{175}{4.94}$	$\frac{202}{5 \cdot 70}$	49	$\frac{51}{1.44}$	88 2.48	$\frac{110}{3.10}$	$\tfrac{102}{2,88}$	$\frac{112}{3.16}$	3.38	$\frac{45}{1,27}$	$\frac{133}{3.75}$	$\frac{150}{4.23}$	$\frac{146}{4.12}$		5.56	$\frac{192}{5.42}$
Ē	Sul - fote (SO ₄)		54		52 1.08		<u>102</u> 2,12			76 1.58		44 0.92		49 1.02		<u>105</u> 2.19		_	<u>571</u> 11.89	
Mineral constituents	Bicor- bonote (HCO ₉)	(00	284	272	295		<u>434</u> 7.11	404		362 5.93		<u>219</u> 3.59	236 3.87	$\frac{102}{1.67}$	_	<u>319</u> 5.23		(00.0	462	
al can:	Corbon- B ote b	(2+5.	0.00	0.00	0.00		0.00	0.00		0.00		0.00	0.00	0.00		4.0.13		× (3-	0.00	0.00
Miner	Potos - Carbon- sium ats (K) (CO ₃)	VALLEY (2-5.00)	0.02	10	0.02		0.02	10		0.01		1.6		2.0	-	0.02		VAL E	1.7	
	Sodium P.	CLAYTON	29 1.26	<u>30</u> 1,30	91 3.96		56 2.44	64 2.78		46 2.00		98 4,26	4.35	36 1.57		<u>119</u> 5.18		YCHACTO VALLEY (?-6.00)	289	<u>307</u> 13.35
	Magne - S. sium (Mg)		3.8	36 2.97	32		6.3 0.52	56		39.20		24 2.01	29 2.38	18		3.4			30	
	Calcium Mc (Ca)		105 5.24		105		8.33	81 4.04		128 6.39		35	36	20		140 6.99			207	113 5.64
-	DH C		8.1	8, 2	8.2		8.2	8.2		8.1		7.8	8.3	3.3	-	8.4			8.2	8.3
Specific conduct-			627	597	1170	1310	1020	908	1360	1080	1060	828	867	431	1000	1230	1230		2310	2260
Sp	Temp in aF																			
	Date sampled	_	7-20-64	9-23-65	7~20-64	9=23-65	7-20-64	9-23-65	9=23=05	7=20=64	9-23-65	7-20-64	9-23-65	7=20=64	9=23=65	7-20-64	9-23-65	-	7-20-64	9-23-65
State well	number and ather number		1N/1W=4A1		1N/1W-4R1		2N/1W-30J1		2N/1W-30K1	2N/1W-3101		2N/2W-13P1		2N/2W-26B1		2N/2W-36J1			1N/1W=7K1	
	O¥nar gnd use		G, Corletto	UUNDELAC G AND AGENTION	8.11. Cowell Foundation		7, Baker		J. Oimbrow gardening	F. Durville		R. B. Ogflvie domonalic	1	Bortinuia	CODO E TY C	J. D. Natlan			A. Sebaatiani	d Cimper I C

ANALYSE DE CHOUND WATTE

	Analyzed by		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DHR	DHR	DWR	DHR	DAR		DWR	DWR	DWR	DWR
-			_		0	0	70 L	-	0	0	_						0		95
Hardness	as CoCO Tatal N.(P.p.m pp		576 142	594 151	346	318	559 70		169	223	1180 567		688 175	694 197		464 170	20.	289 109	281 9
	sod- tum Tot PL		_	_	_	_			1 62	74 2	32 11	_	25 6	26 6		31 4	58 2	42 2	46
of al	solvad solids in ppm		1210 45	46	700 45	48	926 33		979 7	2	2150 3		1030 2	5		855 3	518 5	684 4	709 4
Ĕ			12				6				21		10						
-	Silica (SiO2) Other constituents															ABS: 0.0	ABS: 0.1	ABS; 0.0	ABS: 0.0
	n Silico (SiO																	_	
llion	- Boron (B)		1.0	0.9	1.3	1.1	1.3	1.0	6.7	6.1	1.3	Г. Т	0.5	0.4		0.1	0.2	0.3	0.3
equivalents per million	Eluo- a ride (F)		10		10		1-	Im	10		-7	10	100			47	0	1=	12
valants per mill	NI- trote (NO ₃)		24 0.39		0.00		38	33	0.00	_	$\frac{120}{1.94}$	<u>167</u> 2.69	5.1			<u>27</u> 0.44	11 0.18	0.01	0.01
equi	Chio~ ride (CI)		252	<u>258</u> 7.28	<u>131</u> 3.70	$\frac{123}{3.47}$	$\frac{146}{4.12}$	3.10	324	<u>291</u> 8.21	<u>495</u> 13.96	<u>483</u> 13.62	$\frac{252}{7.11}$	255		176	164	<u>196</u> 5.53	$\frac{211}{5.95}$
-	Sul - fate (SO ₄)		238 4.96		28 0.58		109	<u>108</u> 2.25	0.00		<u>415</u> 8.64	434 9.04	38 0.79		.01)	<u>98</u> 2.04	28	$\frac{44}{0.92}$	39
Mineral constituents	Bicar- bonats (HCO ₃)	(2-6,00) (Cunt.)	529 8.67	<u>540</u> 8.85	<u>480</u> 7.87	<u>461</u> 7.56	<u>596</u> 9.77		<u>419</u> 6.87	$\frac{472}{7.74}$	626 10.26		626 10.26	<u>590</u> 9.67	BAY (2+9.01)	<u>343</u> 5.62	234	<u>219</u> 3.59	3.72
ral cor	Carbon- ote (CO ₃) ((2-6.0	0.00	0.00	11 0.37	10	0.00		30	<u>18</u> 0.60	0.00		0.00	8 0.27	EAST BA	8 0.27	$\frac{14}{0.47}$	0.00	0.00
Mine	Potas - Carbon- sium ate (K) (CO ₃)	VALLEY	<u>1.0</u> 0.02	_	3.0		0.4		4.7 0.12		0.9		1.6			$\frac{1.6}{0.04}$	2.7	<u>3.6</u> 0.09	<u>3.6</u> 0.09
	Sadium (Na)	YGNACIO VI	<u>220</u> 9.57	238 10.35	133	<u>135</u> 5.87	125		308 13.40	295 12.83	262 11.40		<u>105</u> 4.57	<u>115</u> 5.00	CLARA VALLEY	<u>95</u> 4.13	<u>129</u> 5.61	96 4.18	<u>110</u> 4.78
	Magne - S. stum (Mg)	YG	50		12 1.02	34	62 5,13		34 2.83	30 1	131 10.81		38	<u>90</u> 7.38	SANTA CL	<u>56</u> 4.58	<u>28</u> 2,31	2.23	<u>26</u> 2.12
	Calcium Ma (Ca)		148 7.38 4	6.24 5	118 5.89 1	3.59 2	121 6.04 5		0.55 2	40 2.00	256 12.77 10		212 10.58 3	1 <u>30</u> 6.49	001	94 4.69	35 1.75	3.54	3.49
	PH Cal		8.0	8.0	8.4	8.4	7.8 1		8.5	8.5	7.8 2		8.2 2	8.4 1		8.5	8.6	8.0	
Specific conduct-	1		2020 8	2030 8	1200 8	1130 8	1540 7	1430	1730 8	1680 8	3240	3 280	1730 8	1700 8		1290	1010 8	1070	1120
Spe	Tamp of in °F (m m		2						-								67		
			64	65	64	65	64	65	179	65	64	65	64	65		65		.65	- 65
	Sompled		7-20-64	9-23-65	7=20=64	9~23~65	7-20-64	9~23=65	7 - 20-64	9=22=65	7=20-64	9-22-65	7=20-64	9-22-65		6-22-65	6=22=65	6-22-65	6-22-65
State well	number and ather number		1N/1W-29G1		1N/2W-11N1		1N/2W-13P1		2N/2W-27R1		2N/2W-36E1		2N/2W=36E2			1S/4W-4A1	1S/4W-34F2	2S/3W-28G1	2S/3W-30A1
	Owner and use		G. Landis	2 4 a 2 June 1 0 0	C. Hook dommatic		J. E. Welle domeatic & irrisation	9 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	F. H. Dunham domearic		A. Buecaglia domeatic		S. Rock dommetic			Manasse Block Tanning Co. industrial	Red Star Yeast Co. industrial	A. Ratto irrigation	Alameda Municipal Golf Course irrigation

	Andiyzed by		DWR	DWR	JUAR	NWG	DWK	DWR	DWR	DUR	DUR	DWR	DWR	BWR	DWR	DWR	DWR	DWR
			1170	0	84	20	0	22	06	114	59	0	0	0	0	34	485	
Hardness	os CaC Tatol PPm		1370 1	166	341	183	105	213	438	420	867	126	127	203	180	589	862	
	trum trum		29 1	20	23	42	19	53	27	27	31	59	67	19	59	42	33	
Tatol	solived solids in ppm		3560	367	574	334	491	524	673	686	717	352	442	581	909	1200	0551	
	Silica (SiO ₂) Other constituents		ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	ABS: 0.0	
	Silica (SiO ₂)									-							_	
u	Boron (B)		0.3	¹⁷ .0	0.2	0.4	0.3	0.3	0.4	0.2	0.3	0.3	0.4	0.6	0.5	1.2	0.4	
millian er mil	Fluo- ride (F)																	
parts per millian equivalents per millian	NI- trate (NO ₃)		$\frac{0 \cdot 2}{0.00}$	$\frac{1.8}{0.03}$	$\frac{71}{1.14}$	$\frac{1.8}{0.03}$	$\frac{0, 4}{0.01}$	$\tfrac{0.9}{0.01}$	$\frac{57}{0.92}$	$\frac{44}{0.71}$	<u>50</u> 0.81	0.00	0.00	0.01	$\frac{0.1}{0.00}$	<u>83</u> 1.34	251 4.05	<u>32</u> 0.52
equivo	Chio- ride (Ci)	(··)	<u>1170</u> 32.99	$\frac{27}{0.76}$	<u>38</u> 1.07	$\frac{27}{0.76}$	$\frac{103}{2.90}$	$\frac{169}{4.77}$	$\frac{74}{2.09}$	$\frac{111}{3.13}$	$\frac{106}{2.99}$	$\frac{48}{1.35}$	$\frac{85}{2.40}$	$\frac{125}{3.53}$	<u>203</u> 5.73	<u>153</u> 4.32	$\frac{392}{11,06}$	<u>84</u> 2.37
,c	Sul - tata (SO ₄)	(2-9.01) (Cont.)	<u>132</u> 2.75	37	$\frac{70}{1.46}$	27	39 0.81	23	$\frac{94}{1,96}$	<u>88</u> 1,83	84	$\frac{4.2}{0,87}$	<u>55</u> 1.14	$\frac{55}{1.14}$	48 1,00	$\frac{192}{4.00}$	$\frac{151}{3.14}$	
constituents	Bicar- bonate (HCO ₅)	(2-9.0	$\frac{24_44}{4.00}$	<u>295</u> 4.84	$\frac{313}{5.13}$	<u>299</u> 4,90	<u>286</u> 4 , 69	213	<u>4.25</u> 6.96	$\frac{373}{6.11}$	<u>454</u> 7.44	$\frac{252}{4.13}$	$\frac{261}{4.28}$	<u>305</u> 5.98	$\frac{24.1}{3.95}$	01.10	$\frac{460}{7.54}$	
	Carban- ate (CO ₃) (CAST BAY	0.00	8 0.27	0,00	0.00	4 0.13	0.33	0,00	0.00	34	0.00	$\frac{6}{0.20}$	0.00	0.00	0.00	0,00	
Minerol	Potas - Ca sium (K) (C		0.33	0.11	0.02	0.05	0.06	0.06	3.4	0.05	0.03	<u>3.0</u> 0.08	3.0	<u>2.7</u> 0.07	3.9	<u>1.9</u> 0.05	0.03	
	Sodium P.	GLARA VALARY	$\frac{266}{11.57}$	<u>79</u> 3.44	48 2,09	61 2.65	<u>119</u> 5.18	<u>112</u> 4.87	<u>77</u> 3.35	$\frac{71}{3.09}$	102 4.44	86 3.74	<u>121</u> 5.26	<u>150</u> 6.52	1 <u>57</u> 6.83	<u>198</u> 8.61	<u>199</u> 8.66	-
	Magne - Si sium (Mg)	SANTA GLA	123	18	36 2.97	1.52	17	24	38	33	41 3.41	0.82	9,6 0.79	20 1,66	<u>18</u> 1.50	67 5.48	<u>103</u> 8.44	
	Calcium MG	SA	346 17.27 10	<u>37</u> 1.85	3.84	43 14 1	38	45 2.24	5.59	5.69	6.54 3	34 1.70	35 35	48 2.40	42 2,10	126 6.29	176 8.78	
\vdash	PH Ca		8.0		7.8	77	8.4	8.6	1.8		9.8	6.3	5.9	e. 3	8.3	8.1	8.0	
Specific canduct-			4000 8	634 8.	840 7	595 8.	863	90.096	1120 8	1130 8	1280 8	635 6	819 6	1050 8	1100 8	1870 8	2440 8	980
Sp	Temp e in °F (π n		00	66				67	99	63		-	73	76	44			
	Date sompled		6-22-65	6=23=65	0=23=05	6-23-05	6=22=65	6=22=65	6-23-65	6=24=65	6-24-65	6=24=65	6=24=65	6=23=65	6=23=65	6=24=65	6-24=65	3=15-65
	nber and er number		2S/3W-30D2 6.	2S/3W-33H3 6	2S/3W=34A2 6	2S/3W=34D3 6	2S/4W-3E1 6	2S/4W-3F1 6	3 3S/2W-7J1	3S/2W-19R4 0	3S/2W=30R14 6	33/2W-31K1 6	3S/2W-32D2 6	3 s/3W=103	35/3W-11Q1	35/3W-1382 0	35/3W-24Q2	1N2=H1/S†
	Owner grd use		Soeres irrigation	Hohenar Packing Co. domestic & indostrial	R. A. Zobal frigation	J. A. Jacklich domeetic	Alameda Naval Afr Station irrigation	Todd Shipyard industrial	Bayeide Nureery irrigation	Kruger & Sone industrial	A. Matua irrigation	Lormenn Cstate irrigation	Mt, Eden Nursery domostic & irrigation	Avanaino Mortenson Co. irrigation	Trojen Powder Co. abandoned	Cianelli irrigation	J, Harat domentic & stock	Citizen'e Dilities Co. monicipal

ANALYELE OF CHORNE WALLE

_	WATER
	٥
ш	GROUN
L	G
ВГ	PР
TA	ANALYSES

	Anolyzed by		DHR	IMR	DWR	DWR	DWR	DWR	DirR	DWR	DHR	DWR	BlirR	DAR	DWR	DWR	DWR	DWR	DWR	DMR	DWR
Hordness	N C PPM												351	139		163					
Hord	05 Co Totoi ppm												427	338		401					
- Dar	dis- eolved cent solids sod- in ppm						_						32	25		22					
Toto										_			94.2	516		662					
	Silica (SiO ₂) Other constituents																				
	n Silico (SiO							-													
illion	Baran (B)			_									0.3	0.3		0.3					
ports per million equivalents per million	Ni- Fluo- trote ride (NO ₃) (F)					10	1.0	10	Let		1=		15	(0)							
valents p						82 1.32	$\frac{134}{2.16}$	86	58 0.94		38 0.61		4.5	39		36 0.58					
nbe	Chio- ride (CI)	nt.)	$\frac{61}{1.72}$	$\frac{75}{2.12}$	$\frac{60}{1{}_{*}69}$	3.19	246	256	$\frac{61}{1.72}$	$\frac{115}{3.24}$	91 2.57	503 14.18	358	$\frac{93}{2,62}$	$\frac{117}{3,31}$	$\frac{122}{3.44}$	202	536	$\frac{231}{6.52}$	1060 29.91	968
Ē	Sul - fote (SO ₄)	01) (10											<u>52</u> 1,08	84		$\frac{81}{1.69}$					
Mineral constituents	ticar- onate 1CO ₃)	(2-9.0											$\frac{93}{1.52}$	243		363					
ol con	Potos - Carbon-Bicar- sium ote bonate (K) (CO ₃) (HCO ₃)	ST BAY											0.00	0.00		00.00					
Miner	(K) (C	Y = EAS											0.07	2.1		2.3					
	Sodium (Na)	SANTA GLARA VALLEY - EAST 84Y (2-9.01) (Cont.)											93	<u>52</u> 2,26		60 2.61					
		IA GLAR											42 3.44 4	49 4.01		60 4.92					
	m sium (Mg)	SAN																			
	Calcium (Ca)												0 102 5.09	<u>55</u> 2.74		$1 \frac{8b}{4.29}$					
2 5	H C				~	0	0	0	10		-		0 8.0		0	9 8.1	0	0	0	0	0
Specific conduct-	once (micro- mhos of 25° C)		943	1050	898	1160	1740	1620	506	1040	1030	2070	1440	607	1130	1150	1440	1730	1560	3490	3360
	Temp In °F																				
	00te sompled		10~64	3-29-65	9-20-65	10~64	3-29-05	9-17-65	10-64	3-15-65	9-15-65	3=65	9-15-65	79-07	3-15-65	9=15=65	10-64	3-16-65	9-15-65	3-24-65	9-16-65
State well	number and other number		4S/1W-7P2			4S/1W-7R1			4 S/1W-7R5			4 S/1W-17E2	4 S/ 1W-17E4	4S/1W-18C2			4S/1W-18G1			4 S/ 1W- 18H3	
	Owner and use		Southern Pacific RR	5044 800 84 84		Southern Pacific RR			Decoto Masonic Home dom farm. & sarden			J. S. Andrade irrigation	M. Freitee irrigation	H. Faria irrisation			Pacific States Steel	4		American Forge Co. industrial	

	_																
	Anaiyzed by			DWR	DWR	DWR	DMR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	840 8	DWR
iness	as CoCO ₃ Tatel N.C			768	_	440								96		36	
		:		834		620						_		290		170	
-	dis sod-	-				17								24		58	
Tote	dis- solved solids in ppm			1450		1200								455		000000000000000000000000000000000000000	
	Silica (SiO ₂) Other constituents															$\begin{array}{c} c_{x} ^{+6} & \underline{0.00} \\ A1 & \underline{0.00} & A8 & \underline{0.00} \\ c_{u} & \underline{0.00} & P9 & \underline{0.00} \\ Mn & \underline{0.00} & 2n & \underline{0.00} \\ A8S & \underline{0.00} & S8 & \underline{0.001} \\ Fe & \underline{0.00} & (Total) \\ Phenche & \underline{0.001} \end{array}$	
	Silica (SiO ₂																
n	Baron (B)	1_		0.0		0.3								0.4		0.5	
parts per millian equivalents per million	Flua - ride (F)	ļ															
arts pe alente	Ni- trota (NO ₃)			4.6		3.4						3.5		$\frac{2.1}{0.04}$		0.02	
d vinbe	Chla - ride (CI)		<u>nt.)</u>	<u>580</u> 16.36	$\frac{369}{10.41}$	$\frac{360}{10,16}$	$\frac{161}{4.54}$	<u>183</u> 5,16	$\frac{41}{1.16}$	$\frac{273}{7.70}$	$\frac{167}{4,71}$	$\frac{133}{3.75}$	$\frac{129}{3.64}$	82 2.31	<u>313</u> 8.83	66 1.86	7 <u>8</u> 2,20
ni si	Sul - fate (SO ₄)		.01) (Cc	$\frac{56}{1.17}$		66								$\frac{63}{1.31}$		41 0.85	
Mineral constituents	Carban-Bicar- ote banate (CO.) (HCO.)		Y (2-9	$\frac{81}{1.33}$		3.60								<u>236</u> 3.87		163 2.67	
eral c(arban- ote	n l	AST 8A	0,00		0.00								0.00		0.00	
Ni	Patas-Carban- sium ote t (K) (CO_) (EY - E	3.9		3.0								2.6		2.1 0.05	
	Sadium (Na)		SANTA CLARA VALLEY - EAST 84Y (2-9.01) (Cont.)	72 3.13		$\frac{60}{2,61}$								$\frac{42}{1.83}$		48 2.09	
	Caicium Magne - (Co) (Mg)		SANTA C	103 8,48		<u>62</u> 5.11								2.30		1.45	
	Calcium (Co)			164 8.18		$\frac{146}{7.28}$								70 3.49		<u> 39</u> 1.95	
	H			7.8		8.3								7.5		8.2	
Spacific	once (micro- mhas			2180	1610	1570	958	1080	626	1350	076	866	818	771	1480	580	598
	Temp in °F																
	Dofe sampled			10-64	3-16-65	9-15-65	10-5-64	10-64	3-16-65	9-15-65	10-2-64	3=30-65	9-15-65	10-23-64	10-64	8-17-64	10-2-64
State well	number and other number			4S/1W-18M7			4S/1W-19A1	4S/1W-20D2			4S/1W+20E1			4S/1W-20N3	4S/1W-20N5	45/1W-21F2	
	Owner and use			M. Rose irriestion & domestic			Rhodee - Jamieson industrial & irr.	Santa Cruz Portland Coment Co.	not in use		Celifornie Nureery Co. industrial			Clements Construction Company Industrial	Pacific Cement & Aggregates, inc. induerrial	Citizan's Urilities municipel	

	Anolyzed by			DWR	NMO	е Н	DMR	RHO I	DWK	DMR	DWR
	503	DDm DDm	_	47	6	68	44				ŝ
	os CoCO 3	ppm		192	192	278	223				263
	dis- Per- solved sod-			36	38	59	31				53
Total	solved solved	in ppr		365	348	8 9 7	374				395
	0 Other constituents	(Sr0 ₂)		$\begin{array}{c} cr^{+6} & 0.00 \\ A1 & 0.00 & A6 & 0.00 \\ Cu & 0.00 & Pb & 0.00 \\ Mn & 0.00 & Zn & 0.00 \\ ABS & 0.01 & (70cal) \\ Fe & 0.01 & (70cal) \\ Phenole & 0.000 \end{array}$	$\begin{array}{c} cr^{+6} & 0.00\\ A1 & 0.00\\ Cu & 0.00\\ P1 & 0.00\\ P1 & 0.00\\ A83 & 0.0\\ P383 & 0.02\\ F2 & 0.02\\ F2 & 0.00\\ F4 & 0.000\\ F4 & $	Cr ⁺⁶ <u>0.00</u> Al <u>0.00</u> As <u>0.00</u> Mn <u>0.00</u> Pb <u>0.00</u> Mn <u>0.00</u> Zn <u>0.00</u> AS <u>0.00</u> (rotel) Fe <u>0.00</u> (rotel)	Cr + 0.00 Al 0.05 As 0.00 Al 0.02 Fb 0.00 Mn 0.02 Zn 0.01 AlS 0.0 Ss 0.00 Fe 0.10 (Total) Phenola 0.000				Cr + 0.00 Cu - 0.00 As 0.00 Cu - 0.00 As 0.00 Cu - 0.00 Zr 0.00 AdS 0.00 Zr 0.00 Fe 0.00 Fhenols 0.000
Ι.	n Silic	(SrO									
on	Boron			0.4	0.4	0.4	9.0				o. 6
ports per million aquivalants per million	Fluo	E L									le .
orts pe	ź	(NO ₃)		0.02	0.16	0.21	<u>8.7</u> 0.14				0.05
q	Chio-	(CI)	nt.)	8 <u>3</u> 2.34	51	64 1.80	$\frac{61}{1.72}$	<u>50</u> 1.41	25 0.71	48	1.55
Ē	Sul -	(S04)	01) (C	4.2 0.87	54 1,12	<u>81</u> 1.69	46 0.96				$\frac{60}{1.25}$
Mineral constituents	Bicor-	bonota (HCO ₃)	(2-9.	<u>177</u> 2.90	3.65	<u>256</u> 4.20	218 3.57				<u>253</u> 4.15
rol co	arbon-	ofe CO ₃)	ST BAY	0.00	0.00	0.00	0.00				0.00
Mine	otos-Co	(K) (CO ₃) (EV - EA	<u>2.1</u> 0.05	<u>2.6</u> 0.07	<u>2.6</u> 0.07	2.2 0.06				<u>0.04</u>
	Sodium	(NO)	SANTA CLARA VALLEY - EAST BÁY (2-9.01) (Cont.)	$\frac{51}{2.22}$	2,35	53 2.30	47 2.04	48 2.09			2,00 2,00
	1		SANTA CI	$\frac{19}{1.60}$	<u>9.7</u> 0.80	26 2.18	<u>22</u> 1.82				1.81
	tole um	(Cd)		45 2.24	61 3.04	68 3.37	<u>53</u> 2.64				<u>3.44</u>
	F			8.3	8,2	8.1	8.0				8.1
Specific	conduct- once (micro-	mhos ot 25° C)		643	627	772	664	690	615	529	704
	Temp			<i>6</i> 1	61	62					
	Dote			12-3-64	3-4-65	6-8-65	9-2-65	3-16-65	3-65	9=15=65	9-17-64
	State well number and ather number			45/1W-21F2 (Cont.)				4S/1W-21G2	4S/1W-21K3		4S/1W-21P6
	Owner and	nse		Citizen's Utilities municipel				Weedone Company unused	Hamanoto	DOMESTIC G ALL SOLLO	Alameda County Water District municipel

		r				_					
	Analyzed by		OWR	DWR	DVR	OVR	DWR	OWR	DWR	DWR	DWR
Hordness	N C BDM			23	35	20	29	20		23	
				250	255	250	239	235		217	
Par	ent sod-			58	30	31	29	32		28	
Total	solved solved mgg ni			400	402	418	388	394		342	
	Silica (SiO2) Other constituents			$ \begin{array}{c} {}^{+60} & \underline{0.00} \\ {}^{0} & \underline{0.000} \\ {}^$	$\begin{array}{c} c_{r} + 6 \\ c_{r} 0 \\ Al \\ 0.00 \\ Cu \\ 0.000 \\ Pe \\ e \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} c_{r} \stackrel{+6}{\rightarrow} \underbrace{0.00}_{0.00} \\ \text{Al} \underbrace{0.00}_{0.00} \stackrel{R}{\rightarrow} \underbrace{0.00}_{0.00} \\ \text{Mn} \underbrace{0.00}_{0.00} \stackrel{R}{\rightarrow} \underbrace{0.00}_{0.00} \\ \text{Re} \underbrace{0.00}_{0.00} (\text{Totall}) \\ \text{Phenola} \underbrace{0.000}_{0.000} \end{array}$	$\begin{array}{c} c_{r} \stackrel{+6}{=} \underbrace{0.00}_{0.00} \\ A1 \underbrace{0.00}_{0.00} \ Pa \underbrace{0.00}_{0.00} \\ Pn \underbrace{0.00}_{0.01} \ Pa \underbrace{0.00}_{0.01} \\ Pa \underbrace{0.02}_{0.02} \ (rotal) \\ Phenola \underbrace{0.000}_{0.000} \end{array}$	ABS 0.0			
	Silica (SiO ₂)										
lion	Baran (B)		_	0.6	0.5	0.5	0.6	0.7		0.6	
ber mil	Fluc- rida (F)										
parts per million equivalents per million	NI - trate (NO ₃)			2.3	6.4 0.10	0.12	<u>7.0</u> 0.11	4.4		9.0	
d winbe	Chio- ride (CI)	it.)	57	66 1.86	<u>55</u> 1.55	47 1.32	4 <u>3</u> 1.21	$\frac{43}{1.21}$	40	25	24 0 , 68
ų.	Sul - fate (SO4)	01) (Cor		<u>57</u> 1.19	$\frac{67}{1.39}$	66 1.37	55 1.14	64 1,33		$\frac{60}{1.25}$	
Mineral constituents	Potas-Carban- Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	(2-9,		3.93	<u>268</u> 4.39	$\frac{281}{4,60}$	$\frac{256}{4,20}$	246 4.03		$\frac{237}{3,88}$	
eral ca	Carbon- Bicar- ate banate (CO ₃) (HCO ₃)	AST BAY		0.00	0.00	0.00	0.00	8 0.27		0.00	
Ň	Potas-C sium (K)	- K2		1.5	2.4 0.06	<u>1.7</u> 0.04	<u>1.8</u> 0.05	2.0		0.05	
	Sadium (Na)	SANTA GLARA VALLEY - KAST BAY (2-9,01) (Cont.)		$\frac{45}{1.96}$	2.18	<u>52</u> 2,26	$\frac{46}{2.00}$	<u>52</u> 2.26		$\frac{40}{1.74}$	<u>30</u> 1,30
		SANTA GI		$\frac{26}{2.11}$	$\frac{22}{1.80}$	$\frac{1.3}{0.11}$	$\frac{26}{2.14}$	24		22 1.84	
	Calcium Magne~ (Ca) (Mg)			<u>58</u> 2.89	66 3,29	9 <u>8</u> 4.89	2,64	<u>55</u> 2.74		<u>50</u> 2.50	
	Ĩ			8.3	8.2	8,3	8,1	8.6		7.5	
Specific conduct-	ance (micra- mhae at 25° C)		715	710	716	710	670	677	659	607	540
	Temp in °F			19	61	63					
	Sampled		10=1-64	12-3-64	3-4-65	6-8-65	9#2=65	10-2-64	3-16-65	9=15=65	9=15-65
State wail	ather number		4S/1M-21P6	(4S/1W-21R2			4 <i>S</i> /1W-21R4
	Owner and use		Alemede County Water	District municipel				E. F. Mortenatoin freisation	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		M. Iacopi irrigation

	Andiyzed by			DWR	DAR	DWR	DAR	DHR	DWR	DWR	DAR	DHR	DAR	DAR	DMR	DAR	DAR	DAR	DHR	DWR	DHR
Hardness	0.3	bpm		0		0		11	2		17	146		109				0		¢	
Hard	as Co	ppm		115		160		280	162		227	378		335				151		165	
Dar -	sod-					59		32	36		30	20		53				38		37	
Tatal	solved solids	udd ui		726		462		453	297		339	555		684				267		280	
	Silica Stirca Other constituents	U2 ¹							A85 0.0			ABS 0.0						A8S 0.0			
	Baron Sili			3.7	4.8	1.2		0.8	0.3		0.4	0.5		0.6				0.3		0.3	
millio	Fluo - Bo	- 1		e	4	-		0	0		0	0		0				0		0	
valents per mill	NI- FI	03)		2.0 0.03		0.08		7.3	4.2 0.07		3.6	4.0		2.5	2.4	2.3	<u>3.2</u> 0.05	2.2		2.5 0.04	68 1,10
equivalents per million	Chlo-	-+		2.03 0.	86	54 5. 1.52 0.	<u>55</u> 1.55	48 1.34 0.	32 4.	45 1.27	<u>39</u> 1.10 0.	105 2.96 0.	99 2.79	91 2.57 0.	72 2.03 0.	78 2.20 0.	69 <u>3.</u> 1,95 0.	26 2. 0.73 0.	26 0.73	26 0.73 0.	<u>335</u>
			(Cont.)		2,8		512			7			5.0		5	. [6]			00		<u>6</u>
ents in	- Sul -		(10.6-2	0.96		0 ⁶² 1.29		8 72	0 50		0 52 1.08	5 78 1.62		0 70				<u>38</u> 0.79		9 40 0.83	
Mineral constituents	- Bicar	(K) (CO ₃) (HCO ₃)	BAY (586 9,60		311 5.10		<u>328</u> 5.38	0 189 3.10		D 256 4.20	7 260		3 250				3.16		0 <u>3.59</u>	
Ineral	- Carbo	(CO.)	- EAST	0.00		5 0.13		<u>5</u> 0.00	0.00		0.00	6 0.37		7 0.43				0.00		0.00	
-			ALLEY	7.6		0.15		$\frac{2.1}{0.05}$	2.4		2.3	2.2		2.6				1.6		2.0	
	Sodium		SANTA CLARA VALLEY - EAST BAY (2-9.01)(Cont.)	<u>235</u> 10.22		112		$\frac{62}{2.70}$	42 1.83	42	45 1.96	$\frac{44}{1.91}$		44 1.91				43	45 1.96	462,000	
	Mogne -	(Mg)	SANTA	19 1,60		1,50		<u>33</u> 2.70	$\frac{21}{1.69}$		$\tfrac{21}{1.75}$	38		33 2.75				<u>1.22</u>		17	
	F	(Ca)		14		$\frac{34}{1.70}$		<u>58</u> 2,89	$\frac{31}{1.55}$		56 2.79	88 4.39		<u>79</u>				36		38	
	H			8,2		8.4		8.0	7.9		8.2	8.6	_	8.6						8.3	
Specific conduct-	ance (micro-	mnos 11 2 5 ° C)		1210	1440	826	117	819	522	674	653	910	857	849	718	730	738	483	574	539	2150
	Temp in off																				
	Date sompled			10-21-64	3-10-65	9-15-65	3=24=65	9=15=65	10-2-64	3-15-65	9=15-65	10-64	3-16-65	9-15-65	10~2=64	3-16-65	9-15-65	10-1-64	3-30-65	9=15-65	10-26=64
State well	number and othar number			4S/LW-22M2			4S/1W=2882		4S/1W-28C14			4 S/1W=281%			4 S/ 1W= 28 D9			4 S/1W-28F5			4S/1W-28L1
	Owner and use	2		A. J. Rezendes (rrisation			J. S. Dutra domastic ú irrigation	2	Alamede County Water District	municipal		Bodily domeatic é irrigation	3		Alameda County Water District	municipel		Weshington Township Hosoital	domestic		Park Plaze irrigation

_	WATER
1	
ш	GROUND
ы	ΰ
ВГ	OF
4	S
F	ANALYSES
	A
	2

	2		_																		
	Analyzed by			OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	OWR	DWR	DWR	DWR	DWR	
0.655	as CaCO ₃ Tatal N.C. ppm ppm						218	452		614	586		853	38		80					
							628	875		965	649		1010	174		250					
	sod-						27	28		28	18		12	49		44					
Total	solved solved in ppm						1020	1350		1780	1350		1660	406		527					
	Silica (SiO2) Other constituents							ABS 0.0			ABS 0.0			ABS 0.0							
	Silico (SiO ₂)																				
uo	Baron (B)						0.6	0.9		0.8	0.3		0.3	0.4		0,3					
milian er mil	Fluo- ride (F)																				
parts per militan equivalents per militan	NI- trate (NO ₃)			$\frac{42}{0.68}$	$\frac{43}{0.69}$		<u>87</u> 1.40	48 0.77		48	<u>30</u> 0.48		$\frac{0.12}{7.6}$	$\frac{2.4}{0.04}$		2.5					
equiva	Chia- ride (CI)	3	1	<u>223</u> 6.30	<u>352</u> 9.93	<u>237</u> 6,68	<u>140</u> 3.95	461 13.00	475 11.98	625 17.63	464	<u>583</u> 16.48	647 18.25	$\frac{111}{3.13}$	$\frac{111}{3 \cdot 13}$	160	196 5.53	$\frac{331}{9,34}$	446	<u>553</u> 15.60	
.E	Sul - fate (SO ₄)) (Cont					$\frac{173}{3.60}$	93 1.94	1	84	1.10	1	48	46 0,96		48 1.00				·	
Mineral canstituents		(2-9.01) (Cont.)					8.20	<u>516</u> 8.46		7.01	1.26		3.15	<u>166</u>		<u>184</u> 3.02					
l cans	e bo	BAY					0.00	0.00		0*00	0.00		0.00	0,00		<u>12</u> 0.40					
Minera	Patas-Carban-Bicar- slum ate banate (K) (CO ₃) (HCO ₃)	- £AS7					<u>3.2</u> 0.08 0.	3.6 0.09 0.		0,11 0.	<u>3.6</u> 0.09 0		<u>3.7</u> 0.09 0	<u>1.8</u> 0.05		2.2 0.06 0					
		VALLEY																			
	- Sodium (Na)	SANTA CLARA VALLEY - EAST BAY					106	154		7.66	66 2.87		5 62 2.70	3.39		5 <u>93</u> 4.04					
	Calcium Magne - (Ca) (Mg)	SANTA					69 5.66	102 8.40		<u>115</u> 9,45	30		7.96	1.28		1.46					
	Calciun (Ca)						<u>138</u> 6.89	182 9.08		<u>197</u> 9,83	211 10.53		$\frac{245}{12.22}$	$\frac{44}{2,20}$		$\frac{71}{3.54}$					
	Н						8,3	8.1	_	8.3	8.1	_	7.8	8.3		8.6					
Specific				2020	2040	1430	1630	2380	2200	2720	1720	2020	24,90	741	767	973	1090	1560	1770	2230	
	Tamp in eF																				
	Date sompled			3-26-65	9-15-65	9-20-65	9=20-65	10-64	3-16-65	9-15-65	10-21-64	3-26-65	9-16-65	10-5-64	3-16-65	9-15-65	9-20-65	10-20-64	3-23-65	9-15-65	
State wall	number and othar number			4 S/1W=28L1 (Cont.)		4 S/1W-28N1	4S/1W-28R1	4S/1W=29J8			4S/1W-29L12			4S/1W-30E3			4S/1W-30N3	4S/1W-31A2			
	Owner and use			Park Plaza irrigation	5	F. Isola domeetic & irrigation	L. S. Williams domestic	C. Celdare domentic			Alemeda County Weter District	municipal		Alameda County Waler District	municipal		K. Sekiguhama irrigation	lluk anson domes t.t.c			

TABLE E-I

-210-

	Anolyzed by		DWR	DWR	DWR	DWR	DWR	DHR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
9858	N CO3		211	0			407		65		92				0		170		74	0
Hardness	os Ca Totol ppm		286	197			478		274		308		-		359		436		408	133
Par -	sod-		31	7 8							38				44				30	
Totol	solved solved in ppm		562	428			1120		561		582				714		805		639	320
	Silica (SiO2) Other constituents						ABS 0.0		A85 0.0						A8S 0.0		ABS 0.0			ABS 0.0
	Silica (SiO ₂)								_							_				
lion	Boron (B)		0.3	0 °4			0		0.4		0.6				0.9		0.0		0.1	0*0
valents per mill	Fluo- ride (F)																			
ents	Ni- trate (NO ₃)		<u>5.5</u> 0.09	3.6			1.1		64		43				<u>55</u> 0.89		<u>86</u> 1.39		37 0.60	0.01
equivalents per million	Chio- ride (CI)	Ĵ	<u>192</u> 5.42	80 2.26	671 18.93	749	444 12.52	<u>163</u> 4.61	75	83	<u>88</u> 2.48	1380 38.93	<u>1350</u> 38.07	41.75	<u>91</u> 2.57	<u>166</u> 4.68	<u>184</u> 5 • 19	<u>166</u> 4.68	<u>133</u> 3.75	36 1.02
č	Sui - fate (SO ₄)) (Cont	51	57 1.19	17	11.4	38		91 1,89		$\frac{117}{2.44}$				84		<u>38</u> 0.79		$\frac{31}{0.64}$	15 0.31
Mineral constituents	Bicor- bonote (HCO ₃) ((2-9.01) (Cont.)	92	250			88 1.44		255		264 1				461		324		408	276 4.53
l cons	Carbon- Bu ote bo (CO 3) (H	r say	0.00	0.00			0.00		0.00		0.00				0.00		0.00		0.00	0.00
Minero	Potos - Carbon- sium ote (K) (CO ₃) (= EAS	0.06 0	0.06			3.0		<u>3.0</u> 0.08		3.0				<u>3.2</u> 0.08 0		0.07 0		2.3	0.05 0
	Sodium Po	GLARA VALLEY - EAST BAY	<u>59</u> 2 2.57 0	85 2 3.70 0			131 3 5.70 0		91 3.96 0		88 3.83				129 5.61		98 26	8.8 3.83	3.57	3,26
	- +	A CLARA																w]m		
	Calcium Mogne- (Ca) (Mg)	SANTA	31	1.84	_		3.45		3.87		51 4.20				63 5.22		9 52 4.32		40 40	0 1.46
	Calciur (Ca)		64 3.19	42			122		32 1.60		39				<u>39</u> 1.95		88		97 4.84	24 1.20
	H		7.9	8.3			7.7		7.9		8.3				8.3		7.9		8.3	7.9
Specific conduct-	once (micro- mhos of 25° C)		939	788	2730	3080	1740	1540	964	1120	1010	4760	4830	4990	1200	1520	1320	1400	1190	585
	Temp in °F																			
	Date sompled		10-2-64	9-15-65	10-64	3-17-65	10-21-64	3-31-65	10-22-64	3-65	9-15-65	10-26-64	3-30-65	9-15-65	10-64	3-17-65	10-6-64	3-17-65	9-15-65	10-1-64
Stote wall	number and ather number		4S/1W-3183		4S/1W-32A5		4S/1W-32P1		4S/1W-33A1			4S/1W-33E1			4S/1W-33K1		4S/1W-34Q4			4S/1W-34R2
	Owner and use		Alameda County Water District	municlpel	F. Setschart domostic & irrieation		Alameda County Water	municipal	L. S. Williams irrivation	C		J. Pionetta domesnic & irricarion			R. Clarts domostic & irrication		8. Rose domestic			0. N. Hirch irrigation

	P		 																		
	Anolyzed			DWR	OWR	DWR	OWR	DWR	DWR	OWR	DWR	THU	OWR	DWR	DWR	DWR	DWR	AWC	DWR	AWO	OWR
	ds CoCO ₃	D.N.			0	0		0	0		0	982	80		62	9			752	966	
		11			124	118		134	88		142	1120	216		200	240			859	1140	
	Per-	Pos			56			61			55	39			51	25			40		
Tata	dis-	solved solids in ppm			314	359		377	298		349	3560	556		505	342			2250	2230	
		Silica (SiO ₂) Other constituents				A8S 0.0			ABS 0.0			ABS 0.0	ABS 0.0			ABS 0.0				A8S 0.0	
		on Sily (Si	 		8	-			1		t	5	-		7	e			e.	1	
11on milion	-	e Boron	 _		0.2	0.1		0.3	0.1		0.4	0.2	0.1		0.4	0.3			0.3	0.1	
ports per million valents per mill	-	NI- trote (NO ₃) (F)	 		5				5		JE	22	50			<u>6.5</u> 0.10				17 0.27	
ports per million annivelants per million			 	10	7 0.02	0.00	1	8 0.03	4 <u>1.2</u> 0.02	101	<u>9</u> 0.01	5 0.02	1 0.02	1.3	1 2.6 0.04		19	-10	4 1.8 4 0.03		JE
	1	Chlo- ride (CI)	our * 1	<u>124</u> 3.50	38	<u>39</u> 1.10	43 1.21	42 1.18	19 0.54	22 0.62	21	<u>1140</u> 32.15	174 4.91	129	160	29 0.82	$\frac{34}{0.96}$	865 24.45	916 25.84	665 18.76	614 17.31
ats in		Sul - fate (SO ₄)	 (10°6-7)		<u>19</u> 0.40	16 0.33		19 0.40	34 0.71		43	122	38		43 0.90	40			$\frac{69}{1,44}$	360	_
Mineral constituents		Potas-Corbon-Bicor- sium ate bonote (K) (CO ₃) (HCO ₃)			259	<u>315</u> 5.16		<u>325</u> 5.33	<u>230</u> 3.77		279	<u>169</u> 2,77	<u>166</u> 2.72		168	285			<u>131</u> 2.15	178	
ierol c		Corbon- ate (CO 3)	 VS ISV		0.00	0.00		0.00	0.00		90.30	0.00	0.00		0.00	0.00			0,00	0.00	
M		Potos- sium (K)	= 73		1.8	2.1		<u>1.9</u> 0.05	<u>2.1</u> 0.05		2.3	7.7	<u>3.1</u> 0.08		3.0	2.6			6.9 0.18	4.6 0.12	
		Sadium (Na)	SANTA QLAKA VALLEY - 4AST BAL		73 3.18	<u>101</u> 4.39		100	80 3.48		83 3.61	338 14.70	<u>94</u> 4.09		99 4.31	<u>38</u> 1.65			273	163	<u>154</u> 6.70
	F	Magne - sium (Mg)	ANTA UL		<u>18</u> 1.48	17 1.41		<u>18</u> 1,48	12 0.96		<u>10</u> 0.84	99 8.11	20 1.68		1.56	16 1.31			70	146 12.01	
	F	Calcium (Co)	 ingle		20	19		24 1.20	<u>16</u> 0.80		40 2.00	286 14,27	<u>53</u> 2.64	_	49-2-44	70 3.49			229 11.43	215	
-		F			8.3	7.9		8.2	8.1		8.6	7.9	7.8		8,3	8.1			7.8	7.5	
Specific	conduct- once	(micro- mhos at 25° C)		1040	528	651	689	674	517	606	629	3990	964	834	924	620	615	3020	3280	2960	3030
S	Temp	E E			-		_					66									
	Dote	sampled		3-17-65	9-15-65	10-1-64	3-17-65	9-15-65	10-5-64	3-15-65	9-15-65	6-24-65	10-5-64	3-15-65	9-15-65	3-26-65	9=15-65	3-26-65	9-16-65	10-6-64	3-16-65
	number and	other number		4S/1W-34R2 (Cont.)		4S/1W-35P3			4S/2W=3R1			4 S/2W=9 Q2	4S/2W-10C1			4 S/2W-10M1		4S/2W-10N6		4S/2W-10Q2	
		Owner and Use		0. N. Hirch irrigation		Alameda County Water District	municipal		Wiegman domestic & irrigation	2		J. P. Settencourt irrigation	Holly Suger industrial			W. Avils irrigation		Alameda County Woter District	municipol	Scutto Brothere comestic & irrigation	2

	Anglyzed by			DWR	OWR	DHR	DWR	OWR	DWR	DWR	DWR	0 WR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	OWR
Hardness	aco 3	D D UC		926												31					
Haro	s	Total ppm		1348												276					
Per	solved sod-	Ē		20	_											22	_				
Tata	solve solve			2130												374					
		(SiO ₂) Other canstituents																			
	Silica	(Si 0 ₂																			
lion		(B)		0.5												0.2					
061 mi	Fluo-	(F)																			
parts per million ivalents per mill	÷	trate (NO ₃)		18 0.29			36 0.58	28	$\frac{19}{0,31}$	31	$\frac{24}{0.39}$	13 0.21	$\frac{29}{0.47}$	22 0.35	$\frac{12}{0,19}$	$\frac{10}{0*16}$	88 1.42	<u>56</u> 0.90		$\frac{1.2}{0.02}$	$\frac{1.7}{0.03}$
equivalents per million		(CI)	DIE.)	668 18.84	434 12.23	<u>339</u> 9.56	48	53	<u>50</u> 1.41	$\frac{47}{1.32}$	<u>132</u> 3.72	$\frac{47}{1,32}$	$\frac{60}{1.69}$	64 1.80	33 0.93	<u>35</u> 0.99	<u>138</u> 3,89	<u>68</u> 1.92	$\frac{116}{3 \cdot 27}$	<u>57</u> 1.61	<u>62</u> 1.75
5	Sul -	(SO4)	11) (C	312												43					
Mineral constituents	icor-	cO ₃)	(2-9.(<u>515</u> 8.44												<u>299</u> 4.90					
ol cons	ban- B	te bo 03) (H	I BAY	0.00												0.00					
Minero	Patas - Car	(Na) (K) (CO_3) (HCO_3)	SANTA GLARA VALLEY - EAST BAY (2-9.01) (CONL.)	4.4 0.11 0		_									_	2.4 0.06 0					
	Codium	(oN)	LARA VAL	<u>158</u> 6.87												$\frac{37}{1.61}$					
	Magne -	(Ca) (Mg)	SANTA C	$\frac{143}{11.76}$												$\frac{26}{2.12}$	_				
	Coloum	(Ca)		304												68 3.39					
	Hq			7.7							_					7.8					
Specific canduct-	ance (micra-	mhas at 25° C)		3240	2530	2380	838	784	811	882	878	832	869	863	647	696	1520	740	1420	631	699
	Temp																				
	Samoled			9-15-65	3=16-65	9=15=65	10-64	3-31-65	9-15-65	10-6-64	3-18-65	9~15-65	10-9-64	9-15-65	3-31-65	9-15-65	10-7-64	3-18-65	9-15-65	10-2-64	3-16-65
State well	number and other number			4S/2W-1002 (Cont.)	4.S/2W-10Q3		4S/2W-11A2			4S/2W-11G1			4S/2W-11J1		4S/2W-11Q10		4S/2W-11R12			4S/2W-12C1	
	Owner and	USe		Scutto Brothers domestic & irrigation	H. Andrade domestic & irrization	2	J. C. Whipple abandoned			Kitayama irrigation			M. Faria domestic		Ki tayama domestic		J. Goularte domestic			Alameda County Water District	municipal

_	WATER
	Q
ш	GROUN
Ц	
В	OF
4	S
F	VALYSES
	A
	Z

	2																		
	Analyzed by		DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	OWR	DWR	OWR
0655	os CoCO ₃ Totol N.C PPm PPm															1718		1784	0
																1784		2100	144
	Cent sod-															24		18	
Tatoi	solved solved in ppm															3432		4100	333
	Silica (SiO2) Other constituents															ABS 0.0			A85 0.0
	n Silio (SiO																		
parts per million equivalents per mililan	Baran (B)															0.5		0.6	0.1
parts per million valents per mili	Fluo- (F)				1			1.				_				10		10	10
oarts p	NI- trots (NO ₃)		21	60	65	47	39	58								62 1.00		62 1.00	1+4 0.02
linbe	Chla- ride (CI)	Cont.)	50 1.41	73 2.06	79	70	71 2.00	<u>163</u> 4.60	<u>326</u> 9.20	194	<u>289</u> 8.15	<u>1090</u> 30.75	663 18.70	$\frac{415}{11.71}$	122	<u>1276</u> 35.99	<u>1260</u> 35.53	<u>1230</u> 34.70	<u>55</u> 1.55
e E	Sul - fote (SO ₄)) (10.6										•				452 9.41		448 9.33	32 0.68
Mineral canstituents	Patas - Carban Bicar - sium ate banote (K) (CO ₃) (HCO ₃)	VY (2-														81 1.33		<u>386</u> 6.33	<u>242</u> 3.97
eral co	arban- ate (CO 3)	ZAS'T B														0.00		0.00	0*00
LiN	sium (K)	- X31														5.4		5.5	2 * 5 0 * 06
	Sadium (Na)	SANTA CLARA VALLEY - EAST HAY (2-9.01) (Cont.)								73						258 11.22		<u>216</u> 9.40	80 3.48
	Magne - sium (Mg)	SANTA C														218 17.93		237 19.50	11 0.98
	Colcium (Co)															355		450	<u>38</u> 1.90
	Æ											-				7.8		7.6	8,2
Specific	conduct- ance (micra- mhae at 25° C)		606	1070	955	537	955	1370	2060	1350	1710	4200	2740	2080	854	4531	4830	5100	636
	Temp in oF																		
	Date sampled		9-15-65	9-15-65	10-7-64	3-65	9-15-65	10-7-64	10-7-64	3-31-65	9=15-65	10-64	3=19-65	9-15-65	3=31=65	10-12-64	3-19-65	9-15-65	10-9-64
State wall	ather number		4S/2W-12C1 (Cont.)	4S/2W=12N4	4S/2W-12P2			4S/2W-13A1	4S/2W-13C2			4S/2W=13E2			4S/2W-13R5	4 S/2W-14E1			4 S/2W-14J1
	Owner and use		Alamoda County Water Oletrict municipal	Westarn Pacific RR domestic & irrigation	Western Pacific RR irrisation			Logan High School irrigation	J. May irrightion	0		C. Caeso Irrigation)		W. Silva domestic	T. E. Harvey irrigation			A. Caaton domeetic & irrigation

	Anolyzed by			DWR	DWR	DWR	DWR	DWR	DVR	DUR	DWR	DHR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
		n Ludd			103	14		29	57		89	0		0	116		99	50	-	24	1030
Hordness	ā l	bbu			355	140		262	204		324	66		106	255	-	248	243	-	256	1220
Dar -	sod				22	37		23	29	-	19	66		63	24	-	23	22	-	34	18
Total	solved solids	mdd ni			563	274		368	352		448	352		320	437		403	362		323	2140
	Sifico Other constituents	⁰ 2 ¹				ABS 0.0			ABS 0.0			ABS 0.0			ABS 0.0			ABS 0.0			ABS 0.0
	Boron Siti	0				5		5	е		<u>رم</u>	с П		с П			5	<i>с</i> і		0.2	0.5
millio	de Bo				0,3	0.2		0.2	0.3		0.3	0.3		0.3	0.3		0.2	0.3		0	0
equivolents per million	Ni- Fluo- trote ride	VO3) (F			11 0.18	8.7		<u>11</u> 0.18	<u>18</u> 0.29		<u>15</u> 0.24	0.4		<u>1.0</u> 0.02	<u>8.2</u> 0.13		8.3	13 0.21		10 0.16	<u>57</u> 0.92
equivoler	Chio -			69		35 8. 0.99 0.	<u>33</u> 0.93	33 0.93 0.	51 1.44 0.	58 1.64	66 1.86	25 0. 0.70 0.	28		88 2.48 0.	<u>59</u> 1.67	61 8. 1.72 0.	34 0.96 0.	35 0.99	35 0.99 0	794 22.40 0
Ē	Sul - C	-+	(2+9.01) (Cont.)	-1-	58 1.21 2	43 0.90	10	42 0.87	60 1.25		<u>55</u> 1.14 1	41 0.85		42 0.87 0	60 1+25	1-1	<u>52</u> 1.08 1	50 1.04 0	10	46 0.96 0	110 2.29 22
	Bicor- Su bonote fo		(2-9.0		307 5.03 1.	154 4 2.52 0.		284 4.65 0.	179 6 2.93 1.		287 5 4.70 1.	238 4 3.90 0.		244 4.00 4.00	170 6 2.79 1.		3.67 5.	235 5 3.85 1.		251 4.11 0.	235 11 3.85 2.
Mineral constituents	bon- Bic	3) (HC	T BAY		0.00	0.00		7 0.23 4.	0.00		0.00	13 23 0.43 3.		11 2/ 0.37 4.	0.00		0.00 3	0.00 3		16 2: 0.53 4	0,00
Minero	Potos - Carbon- sium ote t	(Y	Y - EAS		2.6 0.07	0.05		<u>2.4</u> 0.06 0.	3.1 0.08 0.		<u>3.0</u> 0.08 0.	<u>1.7</u> 0.04 0.		0.05 0.	<u>2.5</u> 0.06 0.		0.06 0.	2.2 0.06		0.06	<u>6.0</u> 0.10
	Sodium Po	(on	SANTA CLARA VALLEY - EAST BAY		48 2.09 0	<u>38</u> <u>1.65</u> <u>0</u>		<u>37</u> 2 1.61 0	40 1.74 C	94 1.95	<u>36</u> 1.57 0	90 3.92		3.70	37 1.61		34 1.48	32 32 3		33 1.44	5.26
	gne - So	(by	ANTA CLA		49 4.00 2	1.20 1		2.34 1	11 0.94 1		2.08	5.8 0.48 3		0.67 3	2.25		20 1.62 1	2.02		22 1.82	4.87
	Colcium Magne -	() ()	<u>s/</u>		<u>62</u> 3.09 4.	32 <u>1.60 1.</u>		58 2.89 2	63 3.14 0.		4.39 2.	30 5 1.50 0		29 8 1.45 0	2.84 2		67 3.34 1	2.84 2		66 3.29 1	<u>391</u> 19,51
	PH	2			8.2	8.1		8.5	8.3 3.		8.2	8.6		0°.7	7.8		8.0	8.3		8*5	8.2
Specific conduct-		25° C)		838	922 8	472 8	628	667 8	585	763	805	580 8	569	579 8	707	732	697	622	643	656	3100
Sp	Temp In °F	at																			
	0ote sampled			3-19-65	9=15=65	10=64	3-19-65	9-15-65	10-20-64	3-18-65	9-15-65	10-64	3-17-65	9-15-65	10-12-64	3-23-65	9-15-65	10-64	3-18-65	9=15-65	10-22-64
State well	number and other number			4S/2W=14J1		4S/2W-15C1			4S/2W-15L4			4S/2W-22P2			4S/2W-23F2			4S/2W-24D4			4S/2W=24F6
	Owner and use			A. Caeton	unicolar a Allabara	Arenchild domestic & irrigation			King irrigetioa			H. H. Patterson irrigation			Patterson Ranch irrigation			L. Croce irrication			Amarai Arrigation

	Anolyzsd by	T			DWR	DWR	DUR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
		Edd			1363	480		461	46		58	221	213		0							
Hordness	os CoC Total				1620	582		605	256		260	302	420		75							
	sod -	+			15	18		16	22		20	35	28		70							
Total	solved solved in ppm				2470	1020		1080	376		366	664	756		292							
	Silico (SiO ₂) Other constituents					ABS 0.0			ABS 0.0			ABS 0.0			ABS 0.0							
5	Boron S (B)	Ť			0.4	0.4		0.4	0.2		0.3	0.3	0.3		0.3							
nillion r milli	Fluo- ride (F)																					
ports per million valents per mill	NI- F trote	2			28 0.45	<u>31</u> 0,50		$\frac{10}{0.16}$	<u>5.1</u> 0.08		4.4 0.07	9.0 0.14	<u>6.4</u> 0.10		<u>1.2</u> 0.02							
ports per million equivalents per million	Chio-	-1-	(·)	_	29.06	356	<u>235</u> 6.64	<u>344</u> 9.70	<u>38</u> 1.07	<u>36</u> 1,01	54 1.52	227	<u>221</u> 6.23	<u>185</u> 5.23	22 0.62	25	28 0.79	28 0.79	26 0.73	66 1.87	<u>327</u> 9.22	20 0.56
ei I	Sul - fote		1) (Con		<u>122</u> 1 2.54 2	81 1.69 1		<u>85</u> 1.77	<u>57</u> 1.19		5 <u>3</u> 1.10	47 0.98	<u>55</u> I.14		45 0.94							
Minerol constituents			SANTA CLARA VANLEY - EAST HAY (2-9.01) (Cont.)		313 1 5.13 2	125 2+05		2,88 1	256		<u>234</u> <u>3.84</u> <u>1</u>	99 1.62 0	4.15 1		3.65							
ol cons	bon-Bl	(CO 3) (HCO 3)	ST BAY	-	0.00	0.00		0.00	0.00		6 0.20	0.00	0.00		0*00							
Minero	Potos-Corbon- eium ate	2	- FA		0.12 0	<u>3.5</u> 0.09 0		<u>3.5</u> 0.09 0	2.4 0.06		0.05	2.9	0.07 0		0.05							
	Sodium Po		A VALLS		5.66	2.52	<u>52</u> 2.26	2.26	33		31	75 3.26	3.35		84 3.65							
		-	NTA CLAI		185 10 15.21 5	26 2.10 2	101	61 5.05 2	20 1.67 1		1.40 I	9.6 0.79 3	32 2.60 3		0.10 3							
	Colcium Magne- (Ca) sium	-+	VS									105 9.	116 <u>2.</u>									
					0 344 17.16	2 191 9.53	_	1 141 7.04	2 69 3.44		4 76 3.79				3 28							
2	Hd	0		_	8.0	8.2		8.1	9.2		8.4	8.1	0 8.0		2 8.3		61	2	7		0	61
Specific		at 25°			3920	1510	1240	1550	626	629	680	1020	1270	986	502	558	662	622	587	698	1480	592
	Temp in °F								_													
	Date sampled				9-15-65	10-22-64	3-24=65	9-16-65	10-12-64	3-22-65	9-15-65	10-12-64	9-15-65	3~26-65	10-12-64	3-16-65	10-2-64	3-29-65	9 ~ 15=65	3-31-65	9-15-65	10+1-64
State well	number and other number				4S/2W-24F6 (Cant.)	4S/2W-24J1			4S/2W=24L6			4S/2W→26Al		4S/2W-26A2	4S/2W-26G1		4S/2W-27L1			4S/2W-3581	4S/2W-35F1	5S/1W=4D1
	Owner and use				Amaral irrigation	J. A. Machado irrigation			M. Kitani domestic & irrigation	2		H. H. Pattoreon irrigation	2	H. H. Patterson domestic & irrigation	H. H. Patterson domestic é irrigation		H. H. Patterson damostic & irrigation			Bevilacqua irrigation	Leello Salt Co. industriel	E. R. Blacow dom., irr., & stock

TABLE E-I

-216-

	Analyzed by		OWR	OHR	DWR	DWR	DHR	DWR	OWR	DHR	OWR	DHR	04R	OWR	DHR	DHR	DWR	OWR	OWR	DWR
	- T						1034		761	0		224		107		209	312		383	
Hardness	as Ca(Tatal PPm						1180		969	56	_	490		323		512	528		534	
							20		23	81	_	37		36	-	27	32		35	
Total	solved cont solved cont in ppm in ppm						2090		1820	353		884		603		784	1020		1210	
	Silica Other constituents (SiO2)						ABS 0.0					ABS 0,0		ABS 0.0			ABS 0.0			
uD	Boran (B)						0.2		0.3	0.5		0.5		0.3		0.3	0.2		0,2	
ar mill	Flua- ride (F)																			
valants per million	Ni- trate (NO ₃)						5.0 0.08		2.1 0.03	0.00		$\frac{2.1}{0.03}$		2.4		2.7	4.4		<u>4.6</u> 0.07	
equivalants per million	Chia- ride (Ci)	t)	24 0.68	21 0.59	<u>301</u> 8.37	<u>19</u> 0.54	903	890 25.10		17 0.48	<u>186</u> 5.25	<u>335</u> 9.45	7 <u>69</u> 21.69	<u>168</u> 4.74	<u>37</u> 1.05	252	377 10.64	422 11.91	459	<u>57</u> 1.61
e.	Sul - fate (SO ₄)	01) (¢an					43 0.90 2	Ice	0.35	<u>35</u> 0.73		<u>53</u> 1.10	164	50 1.04		46 0.96	38 0.79	1	32	
Minaral constituents	Bicar- banate (HCO ₃)	(2-9.0					178 2.92		254 4.16	285		324		264		370	253		<u>184</u> 3.02	
al con	Carbon- B ate bo (CO ₃) (H	ST BAY					0.00		0.00	10.33		0.00		0.00		0.00	50.17	-	0.00	
Minar	Patas - Ca sium (K) (C	Y = EA					<u>5.9</u> 0.15		0.16	<u>1.5</u> 0.04		3.6		4.4 0.11 0		0.14	<u>5.8</u> 0.15		0.17	
	Sadium Po (Na) 5	A VALLE					142 5 6.18 0		134 6 5.83 6	114 4.96		134 5.83		84 3.65		3.87	118 5.13		5.83	
		SANTA CLARA VAĻLEY - EAST BAY (2-9.01) (\$ant.)					8.21 6		76 1. 6.29 5	<u>3.3</u> <u>1</u> 0.27 <u>4</u>		53 1 4.35 5		37 3.06 3		65 5,34 3	48 3.96 5		<u>57</u> 4,68 <u>5</u>	
	Calcium Magne - (Ca) (Mg)	SA								17 <u>3.</u> 0.85 <u>0.</u>		109 5.44 4.		68 3.39 3.		<u>98</u> 6	132 4 6.59 4		120 5.99 4.	
							0 308		1 262 13.07				-			8.0 9			8.0 12 5.	
fic uct-	C) DH		4	576	0	14	0 8.0	0	60 8.1	610 8.5	50	1820 8.2	00	1060 8.2	622	1470 8.	1670 8.4	1660	1810 8.	874
Specific conduct-	F (micra- mhas at 25° C)		604	52	1350	584	3300	3210	2750	6]	1320	18	3030	106		14	16	16	18	00
	Temp in °F																			
	Dats sampied		3=30-65	9-15-65	3=17=65	10-64	10-64	3-19-65	9-15-65	9-15-65	10-64	3-18-65	9=15-65	10-64	3-18-65	9-15-65	10-64	3-18-65	9-16-65	10-64
State wall	number and ather number		5S/1W-4D1 (Cont.)		5S/1W-5F1	5S/1W-5F2	5S/1W-6G1			5S/1W-8A3	5S/1W-9J1			5S/1W-9K1			5S/1W-9M1			5S/1W=15C1
	Owner and use		E. R. Blacow dom. frr. & atock		Heath Diary domestic & irrigation	J. L. Stevenson domestic & irrigation	L. Milani irrication			Trailmobile, Inc. industrial	Brosius domestic. duck pand			A. F. Brosius domestic & irrigation	2		W, 8. Brinker irrication	2 4 5 0 4 4 5 0 4 4 5 7		<pre>L. Roland, Jr. trrigation (ponds)</pre>

	Analyzed by			DWR	DWR	DWR	DWR	DWR	DWR	DWR	0WR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR
9655									1242	0		0		0		0	0			0
	as CaCO 3 Tatal N.C. Ppm ppm								1390	18		21		68		96	105			208
ġ	- peni								19	16		06		75						22
Totol	solved solved nppm			_					2800	277		274		331		342	334			508
	Silico (SiO2) Other constituents									ABS 0.0										
	Silico (SiO ₂)		-																	
lion	Boron (B)								0.2	0.2		0.2		0.2		0.4	0.3	2.4	1.2	1.3
ports per millon volents per mill	NI- Fluo- trote (NO ₃) (F)																			
Ints per	NI- trote (NO ₃)								4 <u>.7</u> 0.08	0.3		0.00		$\frac{1.9}{0.03}$		0.01	0.01		2.0	8.4 0.14
ports per millon equivalents per million	Chio- ride (CI)	at.)		78	$\frac{76}{2.14}$	27	<u>30</u> 0.85	<u>12</u> 0.34	<u>1070</u> 30,18	$\frac{13}{0.37}$	91 2.57	$\frac{14}{0,39}$	20 0.56	21 0.59		22 0.62	19	<u>67</u> <u>1.89</u>	59	<u>57</u> 1.61
Ē	Sul - fote (SO ₄)	(2-9.01) (Cont.)					-		26 0.54	26 0.54		25 0.52	-	21 0.44	-9.02)	42 0.87	$\frac{48}{1*00}$			92 1.92
Mineral constituents in	Bicor- bonote (HCO ₃)	Y (2-9							<u>181</u> 2.97	<u>205</u> 3.36	_	<u>206</u> 3.38		<u>278</u> 4.56	8AY (2	<u>284</u> 4.65	263			<u>311</u> 5.10
rol coi	arbon- ote CO ₃)	AST RA							0,00	50.17		40.13		0.00	SOUTH	4 0.13	0.00			0.00
Mine	Potos-Carbon- sium ote (K) (CO ₃) (EV #							<u>11</u> 0.28	0.02		<u>1.0</u> 0.02		3.0	ALLEY -	<u>1.7</u> 0.04	<u>2.5</u> 0.06			<u>2.5</u> 0.06
	Sodium F (No)	SANTA GLARA VALLEY - RAST RAY							<u>154</u> 6.70	93 4.04		92 4.00		<u>99</u> 4.30	SANTA CLARA VALLEY - SOUTH BAY (2-9,02)	<u>95</u> 4.13	88 3.83			<u>106</u> 4.61
	Aogne - sium (Mg)	SANTA							<u>116</u> 9.56	<u>1.1</u> 0.09		$\frac{1.3}{0.11}$		<u>5.6</u> 0.47	SANTA	10 0.82	1.00			$\frac{23}{1.92}$
	Calcium Magne - (Ca) (Mg)								<u>365</u> 18.21	5.4		6.3 0.31		18 0.90		$\frac{22}{1.10}$	$\frac{22}{1.10}$			45 2,24
	Hd								7.9	8.5		8.4		8.2		8.4	7.5			8°.
Spacific	ence (micro- mhos at 25° C)			898	950	671	677	521	3820	456	781	451	564	557		619	598	919	1010	865
	Temp In °F															68	68	62	67	
	Date sompled			3-18-65	9-15-65	10-1-64	3-18-65	9-15-65	9-15-65	10-64	3-19-65	9-15-65	3-19-65	10-64		7-28-64	9-24-64	8-12-64	7-31-64	9-22-65
Stote well	number and other number			5S/1W-15C1 (Cont.)		5S/1W-17A1			5S/2W-1J1	5S/2W-1N1			5S/2W=1281	5S/2W-18E3		5S/1E=31E1	6S/1E-6D1	6S/1E-23M4	6S/1E-27C2	
	Owner and use			L. Roland, Jr.		Pacific Gae &	industrial & domeetic		Guardian Paper Co. industrial	Westvaco Chemical Co. Industrial			Leelie Salt Co. industrial	T. Moeley irrigation		J. R. Coelho domestic	Haneon industrial	Azzarello irrígation	Shattuck irrigation	

TABLE E-I

	Analyzed	5		OWR	DWR	OWR	OWR	DWR	DWR	DWR	DirR	DWR	DWR	DWR	DWR	USGS	DWR	DWR	DWR	DWR
655	co3	D.N.C.		0		0		0			0			465	675	0			3	18
Hordness	03 C0	Tota I ppm		224		187		246	_		98		296	614	778	107		-	208	212
Dar -	cent sod-	Ē				33					6.4	-	26	42	36	52			22	22
Tatal	solved	in ppm		353	368	292	440	304	330	396	240	251	424	1320	1750	252	237		305	318
	lino.	(SiO2) Other constituents												ABS 0.0					Se 0.00	
u	oron S	(8)		0.6	0.6	0.1	0.2	0.1	0.1	0.1	0.1	0,1	0.1	0.3	0.3	0.1	0.1		0.2	0.2
r million	- 00	(F)																		
valents per million	- 1N	(NO ₃)		3.0		2.0 0.03		0.2			0.8		$\frac{7.1}{0.11}$	$\frac{1.9}{0.03}$	0.01	0.5	_		4.0	<u>6.6</u> 0.11
equivalents per million		(CI)	nt.)	32 0.90	30	23	47 1.32	23 0.65		80 2.26	0.34		31 0.87	<u>588</u> 16.59	698	16 0.45	<u>14</u> 0.39	<u>15</u> 0.42	18 0.51	15 0.42
Ē		fote (SO ₄)	02) (Coi	59 1.23		33 0+69		37 0.77			17 0.35		<u>58</u> 1.21	67 1.39 1	117 2.44 1	19			<u>30</u> 0.62	47 0.98
Minerol constituents		bonate (HCO ₃)	(2-9.	268 4.39 1		254 4.16		278 0			193 3.16 0		<u>324</u> 5.31 1	182 2.98	126 1 2+06 2	216 3.54 0			250	<u>3.74</u>
ol cons	bon-B	ate bo	JTH BA)	12 20 0.40 4.		6 2 0.20 4		13 2 0.43 4			0.00 3		0.40 3	0.00	0.00	4 2 0.13 3			0.00	4 0.13 3
Miner	otos - Ca	(K) (CO ₃) (2Y - 50	2.1 0.05 0		1.5		0.04 0			0.02		0.04 0	2.3	3.1 0.08 0	0.02			0.04	0.03
	4	(DN)	SANTA CLARA VALLEY - SOUTH BAY (2-9,02) (Cant.)	56 2.44		42 1.83		35			44 1.91		48 2,09	206 8.96	8.79	53			$\frac{27}{1.17}$	28 1.22
	Magne -	+	ANTA CLI	22		15		18			9.2		<u>36</u> 2.92	<u>56</u> 4.59	85 6.96	<u>9.6</u> 0.79			<u>12</u> 1.02	<u>18</u> 1.45
	Mc.		0	53 2.64 1		50 2.50 1		69 3.44			24 <u>9</u> 1.20 0		2.99 2	154 7.68	8.58	27 2 2			63 3.14	2.79
	PH	3		8.6		8.5		8.7	•		8.2		8.6	8.0	8.0	8.3			7.9	8.4
Specific conduct-		at 25° C)		665 8	681	562 8	823	602 8	614	659	376 8	439	730 8	2400 8	2640 8	420 8	644	472	537 7	518 8
Sp	Temp o	5		65		70	79	70			62	70	70	71 2		70		68		97
	Data T			7+31-64	7-21-65	7-29-64	7-21-65	7-28-64	7-22-65	7-22-65	8-21-64	7-22-65	7-31-64	7-30-64	8~25-65	8-21-64	9-23-65	7-22-65	9-6-64	9-18-64
State well	number and			6S/1E-28A4		6S/1E-30M1		6S/1W-1181		6S/1W-14E1	6S/1W-15N3 8		6S/1W-15Q1	6S/1W-16A1		6S/1W-17M1		6S/1W-26D1	6S/1W-28K	6S/1W-27N4
	Owner and	rse		R. Murray domostic		J. Machado domosio & issination		J. S. García domastic & trribation	00000 0 1 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0	A. French domestic & irrigation	S. Chinchen irrieation	5000 0000 0000	Burrell frrigation	R. T. Collier Corp. industrial		C. W. Dunton irrisation		F. A. Wilcox Bros. irrigation	E. A. Wilcox	Liton Construction Co. irrigation

	/zed					S	s	s	~			~	~	~	~	~	~	S	e.
	Anolyzed by		DWR	OWR	DWR	USGS	USGS	USGS	DWR	DWR	OWR	DWR	OWR	DWR	DWR	DWR	DWR	USGS	OWR
Hardness	COCO 3 N.C. PPT		0			0	109	137	0		0		0	0		15		31	
			191			115	444	394	150		192		239	170		332		264	
Par	trad cent		29			59	34	38	45					_				16	
Toto	solved solids solids in ppm		306	305	337	349	618	664	278	282	319	286	315	276	270	453	432	338	
	Silico (SiO ₂) Other constituents					1ron (Dis) 0.12	Iron (Dis) 0.05	Iron (Dis) 0.02	ABS 0.0										
	n Silic (SiO		~	~~~~	~~~~	~~~~			5		8	-		9	1	1		2	0
on	Baron (B)		0.1	0.2	0.2	0.2	0.3	0.5	0.2	0.1	0.2	0.1	0.2	0.6	0.1	0.1	0*0	0.2	0.0
parts per million equivalents per million	Ni- trota (NO ₃) (F)						1=	-19	1=				- 12				-1-		
parts			6.5			7 <u>1.8</u> 0.03	0.01	0.65	0.01	10	0.00	10	0.12	3 0.01	10	4 0.42		9 0.35	
941	Chlo- ride (Cl)	(Cont.)	25		<u>55</u> 1.55	38 1.07	<u>134</u> <u>3.78</u>	145	<u>33</u> 0.93	<u>35</u> 0.99	24 0.68	25 0+70	<u>32</u> 0.90	26 0.73	25 0.70	44		28	31 0.87
ints in	Sul - fote (SO ₄)	SOUTH BAY (2+9,02) (Cont.)	33	£0*0		22 0.46	$\frac{131}{2.73}$	<u>105</u> 2,19	18 0.37		44 0.92		13	32 0.67		16 0.33		23 0.48	
Minerol constituents	Corban- Bicor- ate bonote (CO ₃) (HCO ₃)	BAY (226			3.57	328 5,38	<u>270</u> 4.43	3.87		276		312	<u>238</u> 3.90		<u>387</u> 6.34		284	
nerol c	Corban- ate (CO 3)	HTUOS	80			18 0.60	<u> 39</u> 1.30	22 0.73	16		0.00		0.00	0.00		0.00		0.00	
Ŵ	Potas-Corban- sium ate t (K) (CO ₃) (- 711.	<u>1.1</u>	n		2.0	0.02	0.02	1.7		<u>1.5</u> 0.04		<u>1.5</u> 0.04	<u>1.3</u> 0.03		1.5		0.02	
	Sodium (Na)	SANTA CLARA VALLEY -	37	10.1		78 3.39	<u>104</u> 4.52	<u>109</u> 4.74	57		50 2.18		4 <u>1</u> 1.78	42 1.83		42 1.83		23	
	Mogne - sium (Mg)	SANTA 0	18	1.4.1		12 1.00	49 4.04	<u>87</u> 7,18	13 1.10		1.30		32 2.64	20		36		$\frac{24}{1,99}$	
	Calcium (Co)	_	47	00.2	_	$\frac{26}{1.30}$	97 4.84	$\frac{14}{0.70}$	<u>38</u> 1.90		<u>51</u> 2.54		43 2,14	<u>35</u> <u>1.75</u>		74		66 3.29	
	F		8.4			8,6	8.6	8.6	8 • 7		8.3		8.2	8.3		7.8		7.5	
Specific conduct-	ance (micro- mhos of 25° C)		504	566	574	553	1230	1220	551	566	595	570	633	519	519	824	800	582	624
	Tamp n °F		68		66	87	50	50	68		66	67	70	68		66		66	
	Dote sompled		8-21-64	7-23-65	9-24-65	1-13-65	1-13-65	1-13-65	8-25-64	7-23-65	8-25-64	7-23-65	8=26=64	8-24-64	8-27-65	8-25-64	9~28-65	8-25-64	8-11-65
Stota well	number ond ather number		6S/1W-29C1		6S/1W~31E3	6S/2W-5Q1	6S/2W-6N1	6S/2W-7A1	6S/2W-9H1		6S/2W-9Q2		6S/2W=20N1	6S/2W=24M3		6S/2W-29C2		6S/2W-34M1	
	Owner and use		G. H. Fukumoto	domestic & irrigation	0. P. Gluhaich domestic & irrigation	El Camino Vet. Hosp. domestic	E. Wagner domestic	W. N. Suydam domestic	Rezentes domestic		J. Joaquin irrication		California Water Serv. Company - municipal	D. M. Hom industrial & irr.		Mountain View High	irrigetion	H. Mantelli domestic & irrigation	2

TABLE E-I

	Anolyzed by			USGS	DHR	DVR	DWR	DWR	DHR	DWR	DWR	DWR	DWR	DWR	DWR	DWR.	DWR	DWR	DHR	DWR	DWR	DWR	DWR
1855	103	D.C		0	65	35	42	4.8	0		0				20		28		00	118		86	27
Hordness	00 00	Tatol ppm		420	501	469	202	231	265		336		268		352		222		122	480		258	193
Per-	sod-	5		32	18	20		14	4.8		44		33		25	_	12	_	13	14	-	16	-
Totol	solved solved	in ppr		774	585	582	254	296	590	574	614	642	394	474	437	453	272	226	160	621	394	313	230
	Change and Change	(SiO ₂) official constraints		Iron (01s) 0.01																			
	Silico	(SiO ₂)																					
lion	Boron	(8)		0.6	0.2	0,1	0.0	0.1	0,2	0.2	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1
volents per mill	Fluo-	(F)																					
ents p		(NO ₃)		36 0.58	11 0.18	0.02	<u>5.8</u> 0.09	10 0.16	0.01		18		20		<u>9.3</u> 0.15		8.3		<u>1.1</u> 0.02	49		34	9.0 0.14
aquivolents per million	Chlo-	(CI)	ont.)	84	90 2.54	83 2.34	13 0.37	12 0,34	46 1.30		<u>100</u> 2.82		42 1.18		$\frac{41}{1.16}$		12 0.34		$\frac{6.0}{0.17}$	29 0.82		22 0.62	$\frac{12}{0.34}$
Ĕ	Sul -	1016 (SO4)	.02) (C	107 2.23	27 0.56	<u>27</u> 0.56	48	<u>56</u> 1,16	<u>162</u> 3.37		78 1.62		44 0.92		<u>61</u> 1.27		29 0.60		<u>18</u> 0.37	<u>116</u> 2.42		51 1.06	34
Mineral constituents	Bicor-	bonote (HCO ₃)	X (2-9	<u>564</u> 9.24	475	<u>485</u> 7,95	208	<u>209</u> 3.42	<u>301</u> 4.93		428	-	329		356		220	-	<u>139</u> 2.28	441 7.23		210 3,44	<u>179</u> 2.93
al con	rbon- E	(CO ₃) (I	UTH BA	0.00	28 0.93	22 0.73	0.00	<u>6.9</u> 0.23	26 0.87		14 0.47		0.00		24		8 0.27		0.00	0.00		0.00	<u>12</u> 0.40
Mine	otas- Ca	(K) (CO ₃) (EY - S(0.03	0.02	0.02	0.05	0.03	2.7 0.07		2.2		0.02		0.02		<u>1.0</u>		1.0 0.02	1.1		1.1	<u>1.2</u> 0.03
			CLARA VALLEY - SOUTH BAY (2-9.02) [Cont.]	90 3 • 92	52 2.26	<u>54</u> 2.35	18 0.78	17 0.74	116		125		60 2.61		54 2.35	-	14 0.61	-	<u>8.7</u> 0.32	37		16 0.70	<u>13</u> 0.56
		(6W)	SANTA CL	<u>55</u> 4.56	84 6.92	<u>96</u> 7.87	1.49	23	1.60		46		38.11		<u>51</u> 4.19		2.24		0.84	62 5.10		34	2.06
	Colcium	(Co)	<u>م</u>	3.84	62 3.09 6	<u>30</u> 1,50	51 2.55 1	55 2.74 I	74 3.69 1		59 2.94 3		45 2,24 3		<u>57</u> 2.84 4		44 2.20 2		32 1.60	90 4.49 5		47 2.34 2	36
	PH Co	_		7.8	8.7	8.6	7.6	8.5	8,7		8.5		6.9		00 00		8.6		8.0	8.2		6°.3	8 * 7
conduct-		at 25° C)		1106 7	1030 8	1060 8	475 7	516 8	1060 8	986	1190 8	1170	767 8	872	860 8	861	472 B	450	279 8	997 8	713	568	435 8
	Temp of In o	6		44 1	72	-	64	60	68	-	68	-	66	-	64		68		66	20		67	63
	Dota T somplad i			1-13-65	7-29-64	8-19-65	10-5-64	9=29=65	7-29-64	8-20-65	7-29-64	8-19-65	7-29-64	8-19-65	7-29-64	8-19-65	7-25-64	8-10-65	8-10-65	7-27-64	8-12-65	-64	8-19-65
	Sam			1-1:	7-2	8-1	10-	9=2	7-2	8-2	7-2	8-1	7-2	8-1	7-2.	8-1	7-2.	8-1	8-1	7-2	8-1	8-5-64	8=1
Stota weli	number and other number			6S/3W-1G1	7S/1E-25A2		7S/1W-35H1		7S/2E-6N1		7S/2E=18B1		7S/2E-19E1		7S/2E-33C4		8S/1E-414		8S/1E-10G1	8S/1E-13L1		8S/1E~16D1	
	Owner and	LSE		N. P. Moerdyke domestic	J. A. Baptísta domestic é irrisation		Mayfair Packing Co. irrisetion	1	A. Jaca irrigation		M. F. Douglass domestic		Yonemoto domestic & irrication	0	H. Gerdts domestic		L. F. Farrone irrisation	2	San Joee Water Works municipal	Hall irrication		Athenour Bros. irrigation	

	Anolyzed by			DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR
ster	os CoCO3	D.N.				21		86		35		114	102	48	34		35			79	60
		ppm				212		355		151		298	287	333	246		247			304	261
	cent sod	E				12		16		31		16	17	15	17		17			16	19
Totol	dis- colved solids					237		463		268		700	422	398	311		302		303	417	338
	Silico Other constituents																				
	Silico	10102																			
líon	Boron			0.1		0.1	0.4	0.3	0*0	0.1	0.0	0.1	0*0	0.1	0.1	0.1	0*0	0.0	0.0	0.2	0.1
r millo	Fluo-	(E)				1		- 1-						1							
ports per million equivolents per million	Ni-	(^E ON)				3.9		24		32		58	58	11 0.18	11 0.18		$\frac{10}{0.16}$			39	26
d vinbe	Chlo-	(ci)	Cont.)	14	0.39	<u>11</u> 0.31	40	20 0.56	20 0.56	<u>34</u> 0.96	29 0.82	<u>33</u> 0.93	$\frac{33}{0.93}$	17 0.48	<u>18</u> 0,51	<u>16</u> 0.45	<u>16</u> 0.45	<u>16</u> 0.45	<u>16</u> 0.45	<u>18</u> 0.51	0.48
ë	Sul -	(SO4)) (20.			<u>30</u> 0.62		$\frac{102}{2.12}$	<u>35</u> 0.73	<u>30</u> 0.62		$\frac{66}{1.37}$	66	$\frac{64}{1.33}$	$\frac{42}{0*87}$		$\frac{49}{1.02}$			$\frac{74}{1.54}$	72
Minerol constituents	Bicor-	(HCO 3)	X (2-5			2.33 3.82		<u>328</u> 5.38		142 2.33		$\frac{211}{3.46}$	<u>226</u> 3.70	348	259		<u>259</u> 4.24			266	245 4.02
erol co	orbon-	co 3)	A HIO			0.00		0.00		0.00		6 0.20	0.00	0.00	0.00		0.00			4 0.13	0.00
Ň	Potos-Corbon-	ŝ	EY = \$(<u>1.1</u> 0.03		0.02 0.02		1.2		<u>1.4</u> 0.04	<u>1.3</u> 0.03	$\frac{1.4}{0.04}$	<u>1.2</u> 0.03		$\frac{1.2}{0.03}$			<u>1.1</u> 0.03	<u>1.2</u> 0.03
	Sodium	(0N)	SANTA GLARA VALLEY - SOUTH HAY (2-9.02) (Cont.)			<u>14</u> 0.61		$\frac{31}{1.35}$		<u>31</u> 1.35		$\frac{27}{1.17}$	<u>28</u> 1,22	$\frac{27}{1.17}$	$\frac{23}{1.00}$		23			$\frac{27}{1.17}$	<u>29</u> 1.26
	Colcium Magne -	(Mg)	SANTA Q			$\frac{26}{2 \cdot 14}$		<u>59</u> 4.89		$\frac{22}{1.82}$		<u>36</u> 2.96	<u>33</u> 2.74	$\frac{43}{3.51}$	35 2.88		$\frac{31}{2.54}$			32 2.68	2.42
	Colcium	(0)				42 2.10		44 2.20		$\frac{24}{1.20}$		60 2.99	<u>60</u> 2.99	$\frac{63}{3.14}$	$\frac{41}{2.04}$		4 <u>8</u> 2.40			68 3.39	<u>56</u> 2.79
	H					8.2		8.1		8 .3		8.5	7.1	8.2	8.2		7.8			8.4	89 . 12
Specific conduct-	once (micro-	ot 25° C)		475		467	759	792	470	797	468	685	704	710	577	542	574	546	570	676	624
	Temp In °F			62		65	62		66	65		71	62	65	97	62	62	99		71	
	Date sompled			9-16-64		9-23-65	9~15-64	8-11-65	8-4-64	7-13-64	8-10-65	7-31-64	8-10-65	8-7-64	8-12-65	9=2=64	8-13-65	9-15-64	8-12-65	7=27=64	8=13-65
State well	number and other number			8S/1E-17B1			8S/1E-27C1		8S/IW-10G1	8S/1W-13A2		8S/1W-15B1		8S/2E=7E		8S/2E-16E1		8S/2E-17L2		8S/2E+34A1	
	Owner and use			C. Fammatre	domestic		F. Mazzone domestic & Irrigation		T. Yuki irrigation	Brigge irrigation		N. Rogere izrigation		IBM Corp. irrigation		Rouec domcetic		Kawashima not used		Benson domcatic	

	Anoiyzed by		DWR	DWR	DWR	DWR	DHR	DHR		DHR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hardness			70	32	24		11	2		12	819	792	0	¢.5	4 00	225	0	13	112
Hard	Dotol Dpm		312	200	194		185	194		260	983	964	93	356	392	506	293	264	407
Per -	Cent cod-		17	24	20		22	21		47	69	70	06	73	11	22	50	94	18
Tatol	solved solved in ppm		427	296	267	252	280	252		540	4.04.0	4700	1080	1570	1680	814	675	554	547
	Silico (SiO ₂) Other constituents													ABS 0.0	ABS 0.0				
E	Boron Sil (B) (Si		0.1	0.1	0,1	0.0	0.0	0.0		0.2	62	53	12	6.8	6.7	0.2	1.9	0.8	۰.4 ۵.4
0111	Fluo-Bo ride (-																
valents per million	NI- FI trote r (NO ₃) (4 <u>3</u> 0.69	21 0.34	18 0.29		17 0.27	3.0		0.01	<u>1.5</u> 0.02	0.00	8.4 0.14	<u>34</u> 0.55	40	20	26 0.42	2.1 0.03	14 0.22
equivalents per million	Chio- ride (CI)	(.)	29 0.82	21 0.59	14 0.39		18 0.51	25 0.70		<u>158</u> 4.46	<u>2130</u> 60.09	58.11	236	650	689	<u>108</u> 3.05	3.30	88 2.48	83 2.34
ç	Sul - fote (SO ₄)	.02) (Co	<u>54</u> 1.12	48 1.00	<u>32</u> 0.67		24 0.50	8.6 0.18		<u>13</u> 0.27	18 0.37	<u>34</u> 0.71	<u>85</u> 1.77	76	78	<u>178</u> 3.70	<u>63</u> 1.31	$\frac{104}{2.16}$	<u>60</u> 1.25
Mineral constituents	Bicar- bonate (HCO ₃)	<u>v</u> (2-9,	<u>280</u> 4.59	<u>205</u> 3.36	<u>207</u> 3.39		<u>212</u> 3.47	<u>222</u> 3.64	(2-10.00)	<u>302</u> 4.95	<u>200</u> 3.28	<u>210</u> 3.44	600 9.83	<u>379</u> 6.21	373	<u>303</u> 4.97	<u>394</u> 6.46	306	360
erol co	Potos - Corbon- sium ote t (K) (CO ₃) (UTH B/	70.23	0.00	0.00		0.00	6 0.20	-1	0.00	0.00	00.00	0.00	0.00	0.00	20 0.67	10 0.33	00.00	0.00
ň	sium (K)	- 5	$\frac{1.1}{0.03}$	0.03	<u>1.1</u> 0.03		<u>1.8</u> 0.05	$\frac{1,4}{0,04}$	RE VAL	2.5	2.7	3.5	0.02	1.6	2.4	0.02	<u>1.9</u> 0.05	2.4	2.1 0.05
	Sodium (No)	SANTA GLARA VALLEY - SOUTH HAY (2-9.02) (Cont.)	<u>29</u> 1.26	30	22 0.96		25 1.09	$\frac{24}{1.04}$	LIVERMORE VALLEY	<u>108</u> 4.70	1010 43.94	1030	<u>390</u> 16.96	455 19.79	4 <u>55</u> 19.79	$\frac{67}{2.91}$	<u>137</u> 5.96	<u>104</u> 4.52	42 1.83
	Mogne- eium (Mg)	SANTA GL	<u>35</u> 2.89	2.30	23 1.93	-	<u>18</u> 1.50	<u>23</u> 1.88		$\frac{17}{1.40}$	74	57	1.26	44 3.62	<u>56</u> 4.59	57 4.67	444 3.61	40 3.32	62 5.09
	Colcium (Co)		67 3.34	$\frac{34}{1.70}$	39		44 2.20	40 2.00		76 3.79	272 13.57	292	12 0.60	70 3.49	65 3.24	<u>109</u> 5.44	<u>45</u> 2.24	<u> 39</u> 1.95	61 3.04
i	H		8.5	6.3	8.3		7.6	8.5		8.2	7.4	7.9	6.3	8.3	8.2	8.6	8.4	8.3	8°.1
Specific conduct-	ance (micro- mhos at 25° C)		101	545	472	477	480	478		1010	6600	6510	1800	2860	3040	1200	1160	958	936
0, 0	Temp n • F		67	62	68		69	62		65	68				66	59	64	64	
	Dofe sampled		7-27-64	8-13-65	7-27-64	8~16-65	7-27-64	8-17-65		6-21-65	7-1-64	6=18=65	7-1-64	7-1-64	6-18-65	6=21=65	6-18-65	6-17-65	6=17=65
Stote well	number ond other number		9S/2E-2C1		9S/3E-22B3		9S/3E-36F3			2S/1W-22A1	2S/2E+27Kl		2S/2E-35C1	2S/2E-35G2		3S/1W-12G2	3S/1E-3Q1	3S/1E-8H1	3S/1E-8H3
	Owner and use		H, Ramke irrisation		J. Martinez irrisation		J. Chiri irrigation			T. P. Bishop Co. irrigation	City of Livermore industrial & stock		H. Garavente atock	R. Gustanich domeatic		R. M. Wing domeetic & stock	Alameda County domestic	J. Lima irrigation	U. S. Air Force domestic & irrigation

	Analyzed by			DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	NWR	DWR	DWR	DWR	DWR
1855	N.C.			109	611	145	106	50	199	121	21	4.3	46	229	42	57	97	249	19
Hord	os CaCO ₃ Totoi N.C	Edd		439	535	549	433	250	552	381	252	225	356	515	284	296	312	739	337
	cent sad-			24	29	24	22	21	20	22	32.	20	18	17	20	21	19	43	37
Tatal	solved solids in ppm			668	852	843	628	377	825	565	607	325	467	758	391	416	442	1560	165
	Silico (SiO2) Other constituents														ABS 0.0				
	Silica (SiO ₂)																		
lion	Boron (B)			1.0	1.7	1.4	0.7	0.3	0.6	0.4	0.8	0.2	0.2	0.5	0.3	0 .4	°*0	4.7	1.9
oer mi	Fluo- ride (F)																		
ports per million volents per mill	NI - trots (NO ₄)			<u>29</u> 0.47	25 0.40	26 0.42	$\frac{24}{0.39}$	4.9 0.08	0.22	22 0.35	0.01	<u>13</u> 0.21	12 0.19	<u>19</u> 0.31	<u>13</u> 0.21	34 0.55	40 0.64	0.01	<u>8.7</u> 0.14
ports per million equivolents per million	Chlo- ride (CI)			<u>100</u> 2.82	$\frac{148}{4 \cdot 18}$	$\frac{144}{4.06}$	95 2.68	39 1.10	<u>189</u> 5.33	<u>105</u> 2.96	63 1.78	<u>30</u> 0.85	<u>33</u> 0.93	<u>162</u> 4.57	<u>30</u> 0.85	$\frac{44}{1,24}$	40	255	94 2.65
s in	Sul - fote (SO,)	7	<u>nt.)</u>	70	<u>88</u> 1.83	<u>86</u> 1.79	$\frac{60}{1.25}$	$\frac{52}{1.08}$	$\frac{49}{1.02}$	45 0.94	43 0.90	40 0.83	<u>54</u> 1.12	$\frac{77}{1,60}$	<u>50</u> 1.04	$\frac{34}{0.71}$	40 0.83	434 9.04	72 1.50
Mineral constituents	Bicar- bonate	1500011	.00) (Cont.)	<u>387</u> 6.35	<u>508</u> 8.33	493 8.08	<u>399</u> 6.54	$\frac{244}{4*00}$	430	<u>303</u> 4.97	250	<u>222</u> 3.64	<u>378</u> 6.20	$\frac{349}{5.72}$	<u>295</u> 4.84	292	302	<u>598</u> 9.80	<u>356</u> 5.84
eral co	Carbon- ote	in a	(2-10.	<u>8</u> 0.27	0,00	0.00	0.00	0.00	0.00	7.0 0.23	16	0*00	0.00	0.00	0,000	0.00	0.00	0.00	16 0.53
Mine	Potas-Carbon- sium ote (K) (CO.)		ALLEY	<u>2.5</u> 0.06	3.0 0.08	3.4	2.4	2.0	<u>2.6</u> 0.07	$\frac{2.1}{0.05}$	<u>1.9</u> 0.05	$\frac{1.7}{0.04}$	2.9	<u>2.6</u> 0.07	$\frac{1.7}{0.04}$	1.5	2.0 0.05	2.3	2.6 0.07
	Sodium (Na)		LIVERMORE V	<u>64</u> 2.78	4.35	<u>81</u> 3.52	<u>56</u> 2.44	3 1 1.35	65 2.83	49 2.13	<u>55</u> 2.39	$\frac{26}{1.14}$	<u>36</u> 1.57	48 2.09	<u>32</u> 1.39	<u>36</u> 1.57	$\frac{33}{1.44}$	254 11.05	91 3.96
	Magns - sium (Mg)		TT	66 5.43	$\frac{73}{6*00}$	67 5 • 48	<u>56</u> 4.61	$\frac{26}{2.11}$	87 7.14	<u>62</u> 5.11	28 2.29	$\frac{24}{1,96}$	<u>38</u> <u>3.17</u>	66 5.40	28 2.33	49 4.01	4.03	9.57	53 4.33
	Calcium (Ca)			<u>67</u> 3.34	<u>94</u> 4.69	<u>110</u> 5.49	<u>81</u>	58 2.89	3.89	2.50	<u>55</u> 2.74	$\frac{51}{2*54}$	79	98 4 . 89	67 3+34	<u>38</u> 1.90	$\frac{44_{4}}{2,20}$	<u>104</u> 5 • 19	4 <u>8</u> 2.40
	Å			8.4	8.2	8.3	8.2	8.I	8.0	8.5	9.6	8.1	8.0	8.0	7.9	8.2	8.2	7.8	0
Specific conduct-	once (micro- mhos			1090	1390	1340	1050	627	1320	936	715	552	803	1200	404	698	726	2320	1030
	Temp in °F			64	63			97	64	65		63			62				
	Date sampled			6-21-65	6-17-65	6-23-65	6-16-65	6-17-65	6=18-65	6-18-65	6-18-65	6-18-65	6-17-65	6-17-65	7-1-64	7-1-64	6-18-65	7-1-64	6-21-65
Stots well	number and other number			3S/1E-9K2	3S/1E-9L1	3S/1E=9P1	3S/IE=10E1	3S/1E-10QI	3S/1E-11E1	3S/1E-11H1	3S/1E-13P2	3S/1E-15L1	3S/1E-16A1	3S/1E-17H2	3S/1E~19A5	3S/2E-4H1		3S/2E=4M1	3S/2E-6P1
	Owner and use			E. M. Kamp irrigation	N. Niclson irrigation	R. E. Ernestino domestic	R. Kause domestic & irrigation	H. J. Kaiser Ind. irrigation	Jamicson irrigation	E. Hagumann domustic & irrigation	Californía Rack & Gravel Co domestic	H. J. Kaiser Inc. domestic	H. C. Bush abondoned	M. Kruse irrigation	San Francisco Water Dept. municipal & irr.	Californía Water Service Company	municipal	J. Schenone Irrigation	Condolío domestíc

TABLE E - I ANALYSES OF GROUND WAILH

	Anolyzed by		DWR	DWR	Dirth.	DWR	DWR	DWR	DVR	DHR	DWR						
858	N.C.		78	0	39	53	17	28	59	59	c						
Hardness	tatal PPM		357	358	232	240	233	242	306	285	270						
Dar -	sod- tum		14	14	28	25	42	41	26	27	67			 			
Tatal	solide solids in ppm		433	497	368	390	797	476	443	456	984						
	Silica Other constituents (SiO2)				ABS 0.0		ABS 0.0		ABS 0.0								
) (Sid		~	~	7*0	77	1.2	1.0	4° 0	0.2	5 ° 9			 	 	 	
nillion	e Boron (B)		1	0.3	0.	⁵	1.	1.	°0	0.	°.		 		 	 	
parts per million equivalents per million	Fluc- e ride (F)				1.0		10				10			 	 	 	
valents	Ni- F trate (NO ₃)		29		4.3 0.69	52 0.84	31 0.50	24	16 0.26	$\frac{14}{0.22}$	0.00	_					
inbe	Chio- ride (CI)		47	$\frac{43}{1.21}$	45 1.27	$\frac{46}{1,30}$	$\frac{75}{2.12}$	<u>80</u> 2.26	$\frac{61}{1.72}$	60 1.69	212						
e s	Sul - fote (SO ₄)	it.)	37.0.77	42 0.87	24	24 0.50	52 1.08	<u>58</u> 1.21	58	58 1.21	<u>103</u> 2.14						
Mineral constituents	Carbon- Bicar- ate banate (CO ₃) (HCO ₃)	(2-10.00) (Cont.)	340		235 3.85	<u>220</u> 3.60	264	<u>261</u> 4,28	$\frac{301}{4.93}$	<u>275</u> 4.51	<u>492</u> 8.07						
rai cor	ate ate CO ₃) ((2-10,0	0.00	0.00	0.00	4 0.13	0.00	0.00	0.00	0.00	14 0.47				 		
Mine	Polas - Carbon- sium ate (K) (CO ₃) (1.7 0.04		0.03	0.04	0.05	2.3	0.05	0.05	3.0						
	Sodium P	LIVERMORE VALLEY	27		42	37	79	3.35	2.18	48 2.09	258						
	Igne - Si Mg)	LIVER	60 4.93		36 2.94	36	<u>31</u> 2,52	33	35 2.87	32	46				 	 	
	Calcium (Ca) Magne - sium (Mg)		44 2.20 4		34 1.70 2	36	43 2.14 2	43 2.14 2	65 3.24 2	62 3.09 2	32 32					 	
	PH Col		8.1 4	8.3 2.4	8.0	8.4 2	8.1 2	8.2	8.3	8.0	8.4						
Specific conduct-			770 8.	761 8.	632 8.	635 8,	798 8.	835 8.	789 8.	768 8.	1640 8.					 	
Spse	e ai		1		9			00		2	16						
	Temp in °F			62		70	67		67								
	Date sampled		7-1-64	6=18=65	7-1-64	6-22-65	7-1-64	6-18-65	7-1-64	6-21-65	6~18=65						
State well	ather number		3S/2E-7K1		3S/2E-8H1		3S/2E-10H1		3S/2E-29D1		3S/3E+19C1						
	Owner and use		H. L. Hagemann domostic & irrioorfood		Californía Water Service Company	municipal	Amling OeVor Nursery domentic & irrigation		8. G. Wood irrigation		J. Amarol						

_	WATER
ш	GROUND
ш	a B
1	ЧO
8	
4	S
F	ANALYSES
	\geq
	A
	4

	2																		
	by			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
ness	as CaCO 3 Total N.C ppm ppm				30				62					60					
					282				189					206					
Dec	sod-				24				20					22					
Total	dis- solved solids in ppm																		
	Silica (SiO2) Other constituents																		
	Silica (SiO ₂																		
n II ion	Boron (B)				0.0				0*0					0*0					
r millio per mi	Fluo- ride (F)																		
ports per million volents per mill	Ni- trote (NO ₃)										<u>16</u> D.26								
ports per million equivalents per million	Chlo- ride (CI)			<u>54</u> 1.52	54 1.52	15 0.42	<u>19</u> 0.54	29 0.82	40 1.13	37	$\frac{110}{3.10}$	25 0.70	22	23	$\frac{32}{0.90}$	$\frac{21}{0.59}$	17 0.48	17 0.48	<u>15</u> 0.42
ts in	Sul - fota (SO ₄)	্র																	
nstituen	Bicar- bonate HCO ₃)		(00		<u>307</u> 5.03				<u>155</u> 2.54					$\frac{231}{3.79}$					
Mineral constituents	Potas - Carbon-Bicar- elum ote bonde (K) (CO ₃) (HCO ₃)	REGION	(3-2		0.00				0.00					5 0.17					
Mine	elum (K)	ASTAL	VALLEY																
	Sodium F (No)	CENTRAL GOASTAL REGION (No.	PAJARO VALLEY (3-2.00)		42 1.83				<u>22</u> 0.96					$\frac{27}{1.17}$					
	Calcium Magne- (Ca) (Mg)				<u>22</u> 1.84				<u>28</u> 2.28					28 2,32			_		
	elcium (Ca)				76 3.79				30					<u>36</u> 1,80					
-	F				8.3				8.2					8.4		_			
Specific conduct-			-	712	694	465	424	448	473	439	815	588	516	493	532	482	473	496	1410
	Temp in °F						65			64									68
	Dote sompled			9+22-64	9-24-65	†9-9-0T	10-6-64	9-22-64	9-23-65	10-6-64	9-23-65	9-23-65	9-22-65	9=23=65	9-22-64	9-23-65	10-6-64	9-23-65	10-6-64
Stote well	number and other number			11S/2E=27A1		12S/1E-1R1	12S/1E-11L2	12S/lE-11N1		12S/1E-14J1		12S/1E-23R1	12S/1E=24G1	_	12S/1E-24Q1		12S/2E-7K1		12S/2E-18A3
	Owner and use			S. H. Gandrup domcetic & irrigation		Western Frozen Foods domestic & irrigation	F. T. Blake domestic & irrigation	State Buachae & Parks domestic		J. Roche, Jr.		E. L. Padden domostic	H. Trafton irrigation		Galen & Foster domestic & irrigation		A. L. Waugamon irrigation		Mine irrigotion

TABLE E-I

	Analyzad by		DWR	DWR	DAR	DWR	DWR	DWR	DVR	DHR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
1855	N C O 3			5		101				371		25	12					910	ŝ
Hordness	as Ca Totai ppm			178		238		-		535		237	238					764	68
Der -	t per		_	23		29				25		27	28					25	44
Tatal	dis - salved salids in ppm					427				894			364					1310	194
	Silica (SiO ₂) Other constituents				_														
	Silica (SiO ₂)																		
lian	Boron (B)			0.1		0.0				0.2		0.1	0.3	l.5				0.2	0.0
er mi	Flug- ride (F)																		
valente per mill	Ni- trate (NO ₃)				82 1.32	<u>58</u> 0.94				<u>15</u> 0.24			2.2					4.8 0.08	$\frac{24}{0.39}$
equivalente per millian	Chlo- ride (CI)		13	13	$\frac{72}{2*03}$	73	45	46	247	<u>321</u> 9.06	81	32 0,90	40 1.13	<u>169</u> 4.77	60 1.69	73	446 12.58	<u>524</u> 14.78	$\frac{27}{0,76}$
.c	Sul - fote (SO ₄)	~				47	_			77 1.60			4 <u>3</u> 0.90					<u>116</u> 2.42	<u>4.3</u>
Mineral constituents	Bicar- banate (HCO ₃)	Cont.		<u>192</u> 3.15		<u>155</u> 2.54				<u>176</u> 2,88		<u>226</u> 3.70	263					<u>188</u> 3.08	77 1.26
ral col	Carbon- Bicar- ate banate (CO ₃) (HCO ₃)	3-2.00		9 0.30		<u>6</u> 0.20				$\frac{12}{0.40}$		16 0.53	60.20					0.00	0.00
Mine	Potas - Co sium (K) ((EY (10		0.07				0.13		10	0.06					0.15	0.03
	Sodium P.	PAJARO VALLEY (3-2.00) (Cont.)		$\frac{24}{1.04}$		46 2.00				3.61		$\frac{40}{1.74}$	42 1.83		<u>38</u> 1.65			<u>121</u> 5.26	25 1.09
		PAU		18 1.46		<u>30</u> 2.46				66 5.45		<u>30</u> 2.50	<u>3,21</u>					<u>102</u> 8.42	8,0 0,66
	Calcium Magne - (Ca) (Mg)			42 2,10		46 2.30 2				<u>105</u> 5.24 5		45 2.24 2	31 1.55 3					137 1 6.84 8	0,70
_	PH			9.6		5.8				8.6		8.7						8,2	
conduct-	1		452	430 8	766	644 8	433	517	1290	1500 8	532	595 8	623 8	1690	378	506	1990	2160 8	267 8
00	Tamp in •F								~	69			71					99	65
	Sampled 1		9-22-64	9-24-65	8-14-64	8-24=65	9-23-64	9-24-65	8-11-64	8-24-65	9-23-64	9-24-65	8-14-64	9-25-65	8=31-65	8-31-65	8-14-64	7-20-65	9-1-65
	number and other number so		12S/2E-18K2 9-	-6	12S/2E-30N1 8-	8	12S/2E-31A1 9-		12S/2E-31K1 8-	ŵ	12S/2E-32K1 9-	12S/2E=32J1 9=	12S/2E=32N1 8=	12S/3E-9Q1 9-	12S/3E-19M1 8-	12S/3E=30A1 8-	13S/1E-1A1 8-	7.	13S/2E-1K1 9-
Sto	e u to		al				12S/				12S/	12S/	12S/	12S/		125/			135/
	Owner and use		City of Watsonville domestic & industrial		J. Fenoglio domeetic & irrigation		Renger domestic		Zunino - Tornavaca irrigation		Johnson irrigation	Dr. Rogera Irrigation	G. Hurley irrigation	Tanimura Brog. irrigation	C. McGinnis domestic & irrigation	H. Fukuba irrigatlon	Hurley domestic & irrigation		

	pezi																			
	Anolyzed by			DWR	DWR	DWR	OWR	DWR	DWR		DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR
Hardness	aco.s			183		259		0					35			32			37	
				394		354		71					186			204			307	
Dar	a sod	-		33		48		88					17			16			25	
Tota	solved solved in ppm			723		826					_									
	Silica (SiO ₂) Other constituents																			
	Silica (SiO ₂)												_							
uoi II	Boron (B)		-	0.2		0.2		0.2	0,2				0.0		0.1	0.0	0.1	0.0	0*0	0.2
ber mi	Fluo- ride (F)																			
parts par million valents per mill	Ni- trate (NO ₃)	,		<u>52</u> 0.84	<u>35</u> 0.56	<u>30</u> 0.48														
parts par millon aquivalents per million	Chlo- rida (CI)			$\frac{112}{3.16}$	<u>354</u> 9.99	$\frac{311}{8.77}$	153 4.32	<u>238</u> 6.71	$\frac{111}{3 \cdot 13}$		$\frac{27}{0.43}$	<u>50</u> 0.79	$\frac{21}{0.59}$	<u>30</u> 0,48	48 1.35	15 0.42	170.48	<u>33</u> 0.93	$\frac{47}{1.32}$	60 1,69
¢,	Sul - fate (SO.)	Ŧ	Ņ	<u>185</u> 3 • 85	-	2.19				(00										
Mineral constituents in	Carbon- Bicar- ats bonate	160011	(3-2.d0) (Conk.)	3.64		1.77		<u>197</u> 3.23		N (3-3.00)			<u>184</u> 3.02			<u>210</u> 3.44			<u>329</u> 5,39	
heral c	Potas-Carbon- sium ats b	16.221	(3-2.0	$\frac{14}{0.47}$		$\frac{4}{0.13}$		8 0.27		R BASI			0.00			0.00			0.00	
Mir	Potas- sium (K)		LLEY	4.5		5.2				LLISTE										
	Sodium (Na)		PAJARO VALLEY	92 4.00		$\frac{154}{6,70}$		235 10.22	1.22	GILROY-HØLLISTER BASIN			<u>18</u> 0.78		50 2.18	18 0.78	$\frac{24}{1.04}$	<u>33</u> 1.44	472.04	<u>62</u> 2.70
	Magne - sium (Ma)			54		53		<u>57</u> 0.47					<u>26</u> 2.17			26 2.18			$\frac{41}{3.34}$	
	Calcium (Ca)			69 3.44		<u>55</u> 2.74		$\frac{19}{0.95}$					31 1.55			<u>38</u> 1.90			<u>56</u> 2.79	
	H			6.5				8.5					7.7			7.5			7.0	
Spacific conduct-	ance (micro- mhos			1180	1640	1460	1030	1320	932		408	479	457	450	751	497	451	560	167	1030
	Temp n eF			63	66	68					60	60				61	61			
	0ate sampled			8-24-65	8-14-64	7-20-65	9-23-64	9-24-65	7-20-65		6-8-65	6-8-65	6-8-65	6-8-65	6-8-65	6-8-65	6-8-65	6=8=65	6-8-65	6-8-65
State well	number and other number			13S/2E-5M1	13S/2E-6E2		13S/2E-6P1		13S/2E-7R1		9S/3E-25N3	10S/3E-1E2	10S/3E-23J1	10S/3E-26J1	10S/4E-17F1	10S/4E=18G2	10S/4E-18J1	10S/4E-2802	10S/4E-34L5	11S/4E-3L2
	Owner and Use			J. H. Struve irrigation	G. H. Hurley Irrigation		F. Cspurro & Sons irrigation		Monterey Bay Salt Co. domestic & industrial		T. Andrude irrigution	P. L. Hudson irrigution	J. Orlando domeatic & irrigation	E. H. Henderson domestic & irrigation	Vowinkel domestic	E. Nichols domestic é irrigation	W. Nenzi domestic & Irrigetion	D. Wolfe domestic & irrigation	S. Armendariz domestic & irrigetion	J. Santos Irrígation

	Analyzed	5		DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
3880	co.3	N C N C			81	19	626		343	337	60			128	74			0	50		
Hardness	03 C0	Tatai			359	223	1030		922	745	485	538	516	591	550	536	551	785	358	395	400
Dar	cent sod-	Ē			14	21	28		33	35	37				34			34	41		
Total	solved sod-	solids in ppm									836	948	908	1010	921	617	696		714	788	769
		(SiO ₂) Other constituents																			
	Silo	(SiO				01	10		~						<i>(</i> 0)			0	-		
illion		(8)			0.1	0.2	0.5	1.0	1.3	1.1	0.7				0.8		_	0.9	0.7		-
equivalents per million	Fluo	(F)																			
/alents	ż	trate (NO ₃)									5.6	<u>4.1</u> 0.07	0.02	0.00	$\frac{2.1}{0.03}$	2.0 0.03	2.3		3.5	<u>1.5</u> 0.02	0.00
equiv	Chio	Ci (Ci)		$\frac{65}{1\cdot0^4}$	26 0.73	$\frac{24}{0.68}$	<u>298</u> 8.41	$\frac{381}{7,93}$	160	176	86 2.43				85 2.40		93 2.62	$\frac{103}{2,90}$	76		
ē	Sul -	fote (SO ₄)	(Cont.)								<u>182</u> 3.79	<u>174</u> 3.62	<u>184</u> 3.83	<u>276</u> 5.75	234	<u>265</u> 5.52	273	-	<u>194</u> 4.04	<u>176</u> 3.66	170
Mineral constituents	- cor	c O 3)	(3-3.00)		<u>328</u> 5.38	<u>249</u> 4.08	493 8.08		706	498	482 7.90	<u>567</u> 9.29	488 8.00	<u>531</u> 8.70	<u>580</u> 9.51	494 8.10	492 8.06	966 15.83	<u>320</u> 5.24	404 6.62	390
al con	rbon- B	(K) (CO ₃) (HCO ₃)			4 0.13	0.00	0.00		0.00	0.00	18 0.60	25 0.83	36	17 0.57	0.00	0.00	13	0.00	28 0.93	15	23
Miner	tas-Ca	É Ý	ER BAS		10	10	10		10	10	0.06	10	14	10	3.7	10	10	10	3.8 0.10 0	10	10
	Po		GIIROY-HOLLISTER BASIN		<u>28</u> 1.22	27	<u>186</u> 8.09		210 9.14	182 7.92	5.66	<u>127</u> 5.52	135	141 6.13	5.70	<u>129</u> 5.61	132	184 8.00	5.00	5.13	121 5.26
		(6W)	GILROY		42.3.43	2.12	88 7.26		158 13.03	126 10.39	77 6+31	90 7.41	84 6.87	98	90	89	<u>93</u> 7.67	133	64 5.26	65 5.35	67
	W								5.39 13.	90 12 4.49 10.	68 <u>7</u> 39 6.	67 5.34 7.	69 69 3.44 6.	3.74 8.	3.54 7.	68 68 7.	<u>67</u> 3.34 7.	95 10.	38 6	51 6 2.54 5.	2.50 5.
		(Ca)			3.74	7 47 2.34	8 267					1. 1	1.1			Tea					
0 -t-	H	Ū, Ū		.0	8 8.4	1 7.7	7.8		8.0	7.7	8.5	8 .7	0 8.7	9.4	0 8.0	0 7.9	9.8.4	0 8.0	0 8.6	0 8.7	0 8.6
Specific conduct-	ance	mhas at 25° C)		786	768	551	2470	1790	2280	2030	1340	1460	1430	1520	1490	1470	1490	1970	1110	1220	1220
	Temp in °F										64	65	62	60	9 4	69	70		60	55	58
	Dats			6=8=65	6-8-65	6-9-65	6-8-65	6-8-65	6=8-65	6-9-65	3-9-65	4-1-65	5-3-65	6-1-65	7-2-65	8-11-65	9-2-65	6-9-65	3-9-65	4-1-65	5=3-65
State well	other number			11S/4E-4Q3	11S/4E-2182	11S/5E-27M1	12S/4E-34P2	12S/4E-35C1	12S/4E-36G1	12S/5E-9N2	12S/5E-28P1							12S/5E-33A1	12S/5E-33C1		
	Owner and	use		C. Hosang irrigation	J. D. Fair domestic	C. R. Lanini domestic	Ferry Morse Seed Co. irrigation	Olympia School domestic	M. Diaz domestic	W. Daly irrigation	Amís & Kelley domestic							F. Freitas & Furtado irrigation	P. Nunes domestic		

	Anolyzed by		DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	OWR	DWR
55			49	4.9			150			181	184			127			49	28			48
Hordne	as CoCO ₃ Total N C PPm Ppm		424	404	406	406	640	647	581	672	646	655	648	760	727	856	798	678	634	657	540
	sod- sod- ium			38			46				46			30				34			38
Totol	dis- solvad solids in ppm		792	754	753	784	1310	1430	1410	1480	1460	1480	1480	988	1260	1320	1280	1150	1080	1120	992
	Silica (SiO2) Other constituents																				
	Silica (SiO ₂)													36							
LI ION	Boron (B)			0.7			1.0	_			1.0			1.0				0.9			6*0
r millio	Fluo- ride (F)																				
ports per militon equivalents per militon	NI- trote (NO ₃)		$\frac{1.6}{0.02}$	0.01	0.9	$\frac{0.7}{0.01}$	$\frac{12}{0.19}$	$\frac{15}{0.24}$	$\frac{10}{0.16}$	<u>8.2</u> 0.13	<u>15</u> 0.24	0.00	<u>15</u> 0,24	$\frac{1,3}{0.02}$	0.00	0.00	0.5	0.00	0.00	$\frac{1.5}{0.02}$	8.2 0.13
equivo	Chlo- ride (CI)			$\frac{74}{2.09}$		$\frac{73}{2 + 06}$	<u>172</u> 4.85				<u>200</u> 5,64		$\frac{210}{5.92}$	$\frac{97}{2.74}$				92 2.60		$\frac{91}{2.57}$	$\frac{104}{2.93}$
Ē	Sul - fate (SO4)	(Cont.)	<u>191</u> 3.98	<u>195</u> 4.06	<u>192</u>	<u>192</u> 4.00	452 9.41	388	412 8.58	442 9.20	4.56 9.49	462 9.62	463 9.64	<u>284</u> 5.91	<u>280</u> 5.83	<u>309</u> 6.43	<u>259</u> 5.39	238	268	<u>225</u> 4.68	<u>240</u> 5.00
Minerol constituents	Bicar- banote (HCO ₃)	(3-3.00)	415 6.80	433	<u>432</u> 7.08	447	<u>550</u> 9.01	<u>565</u> 9.26	<u>552</u> 9.05	<u>565</u> 9.26	<u>564</u> 9.24	<u>568</u> 9.31	<u>545</u> 8.93	772	793 13.00	<u>852</u> 13.96	872 14,29	793	700	806 13.21	492 8,06
ol con	Corban E ofe (CO ₃) (†	I I	21 0.70	0.00	0.00	0.00	24 0,80	9 0.30	<u>16</u> 0.53	17 0.57	0.00	0.00	13 0.43	0.00	9 0.30	13 0.43	21 0.70	0.00		00.00	<u>53</u> 1.77
Miner	Potas - Carban- eium ate (K) (C0 3)	ER BAS	10	5 • 1 0 • 13	10	10	7.2 0.18	10	10	10	8.7		10	7.2			10	4.9			<u>3.6</u>
	Sodium Po (No)	GIIROY-HOLLISTER BASIN	120 5.22	<u>114</u> 4.96	<u>118</u> 5.13	<u>119</u> 5.18	250	<u>235</u> 10,22	258 11.22	274	262	258 1.22	$\frac{274}{11.92}$	<u>154</u> 6.70	<u>167</u> 7.26	<u>167</u> 7.26	<u>184</u> 8.00		167 7.26	$\frac{167}{7,26}$	<u>156</u> 6.79
	Magne - So sium (Mg)	GLIROY	70	65 5.38	66 5.43	68 5.61	113 9.26	<u>113</u> 9.29	<u>97</u> 1.97	123 10.09	114 9.42	116 9.53	9.61	133 10.96	130 10.68	150 12.31	$\frac{137}{10.94}$	13	<u>106</u> 8.72	<u>112</u> 9.19	101 8.30
	Calcium Ma (Co) si		54 5.	2+69 5.	53 53 64 5.	2.50 5.	71 11 3.54 9.	73 11 3.64 9	73 3.64 7.	67 11 3.34 10	70 1 3.49 9	72 1 3.59 9	<u>67</u> 1 3.34 9	85 <u>1</u>	3.84 10	96 12	93 1 4.64 10	85 1 1 24 4 4 4		79 1 1	2,50 B
	DH Co		8,5	8.0	7.9	8.3	8.4	8.5	8.5	8.5	8.3	8,1	8.4	8.2	8.4	8.4	8.6	8*1		00 • • • •	6.9
Specific conduct-			1220 8	1230 8	1230 7	1220 8	2080 8	2120 8	2150 8	2190 8	2210 8	2230 8	2220 8	1770 8	1870 8	2010 8	3 0161	1760 8	1720 8	1740	1520
Sp	Temp in °F (n		60 1	64 1	78 1	63 1	64 2	65	64	62	99		63	61	58	57	63	65	71	66	09
	Date sompled		6-1-65	7-2-65	8-11-65	9=2-65	3-9-65	4-1-65	5=3-65	6=1=65	7=2=65	8-11-65	9-2-65	3-10-65	4=1-65	5-3-65	6-1-65	7-2-65	8-11-65	9=2=65	3-9-65
State well	number and ather number		12S/5E-33C1 (Cont.)				12S/5E=33D4							12S/5E-33F1							12S/5E~33H2
	Owner and use		P. Nunce damestic				S. M. Lopaz irrigation							L. Chapel domestic & Irrigotion							R. Lico irrigation

TABLE E-I

-230-

	Anolyzed by	.		DWR	DWR	DWR	DWR	DWR	DWR	DHR	DWR	DWR	DWR	DWR	DWR	DWR						
	-	D.C.				0	136			101	-		112	102			-	0		0		
Hordness	03 C0	Toto! Dpm		737	655	636	807	834	997	408	398	403	424	707	412	414		95		384		
Dar -	cent sod-	Ē					30		_	36						-		56		68		
Totol	solved	E D D D		1210	1210	1190	1300	1380	1450	735	780	786	772	752	733	766						
	0	(SiO2) Other constituents																				
							1.0			0.7				0.6			1.5	0.8	18	3.3	0.8	0.8
million		e (B)					-			ó				0				0	-	ei	ó	0
ports per millian equivalents per million		trote ride (NO ₃) (F)		17	-10	17	. 14	12	-1-1	- 6	. 10	-19	_10	-16	-12	10						_
ports				2.4 0.04	6.0 0.10	7.2	8.7	7.6	0.21	5.4	<u>6.2</u> 0.10	$\frac{6.4}{0.10}$	<u>6.0</u> 0.10	5.4	<u>3.9</u> 0.06	0.10	10	101	10	100	10	1.2
edr	Chio	(CI)					<u>3.24</u>		152	76				$\frac{75}{2.12}$		2.23	152	22 0.62	311	<u>352</u> 9,93	131 3.70	115
s in	Sul -	fate (SO4)	(3-3.00) (Cont.)	223	$\frac{210}{4.37}$	248 5.16	<u>308</u> 6.41	<u>385</u> 8.02	453 9.43	<u>228</u> 4.75	$\frac{214}{4,46}$	206	221	224	228	230					311 6.48	264
Mineral constituents	Bicar-	bonote (HCO ₃)	3-3.00	872 14.29	867	817 13.39	818 13.41	733 12.01	720 11.80	<u>374</u> 6.13	347	358	<u>381</u> 6.24	368 6.03	368 6.03	357 5.85		3.79		<u>596</u> 9.77		
rol cor	orbon-	01e t CO 3) (0.00		0.00	0.00	0.00	0.00	0.00	<u>12</u> 0.40	90.30	0.00	0.00	0.00	11 0.37		0.00		0.00		
Mine	otas - Co	sium ate (K) (CO ₃)	STER 81	10	10	10	<u>4.5</u> 0.12	10	1-	2.6	1.0	10		<u>3.5</u> 0.09								
	d million	(DN)	CILROY-HOLLISTER BASIN	<u>167</u> 7.26	<u>166</u>	<u>152</u> 6.61	<u>162</u> 7.05	<u>176</u> 7.66	<u>174</u>	105	<u>112</u> 4.81	$\frac{114}{4,96}$	$\frac{113}{4.92}$	108	<u>112</u> 4.87	$\frac{114}{4,96}$		<u>55</u> 2.39		368 16.01		
		(Mg)	GILR	128 10.53	126 10.40	126 10.41	136	138	146 11.97	64 5.27	65 5.36	66 5.46	72 5,88	65 5 . 3 8	68 5.59	68 5.63		12 0.95		61 5.03		
	Colourn M	(Co)		84 1 4.19 10		46 10	98 11 11 11	107 1 5.34 11	106 1 5.29 11	2.89		2.59	2.59	2.69	2.59	53 2.64		19 0.95		<u>53</u> 2.64		
	PH	3=		8 0	8.3	8.2	8.0	7.8 1	8.2	8.2	8.6	8.6	8.3	8.2	7.9	8.5		7.5		8.1		
Specific conduct-		mhos of 25° C)		1870 8	1860 8	1890 8	1980 8	2060 7	2150 8	8 0611	1210 8	1220 8	1200 8	1200 8	1230 7	1220 8	1340	077	1540	2270	1580	1440
Spe	Temp o	E TO		60 1	65 1	64 1	66 1	66 2	62 2	57 1	54 1	57 1	60 1	66 1	72 1	62 1				2		T
																	2	<i>.</i> ,	Ś	- <u>-</u>	ŝ	2
	Date somoled			4 - 1-65	5-3-65	6-1-65	7-2-65	8-11-65	9=2=65	3-9-65	4-1-65	5-3-65	6=1-65	7-2-65	8=11-65	9=2=65	6=9-65	6-9-65	6-9-65	6+9-65	6=9-65	6-9-65
State well	number ond ather number			12S/5E-33H2 (Cont.)						12S/5E-34NI							12S/5E-36A1	12S/6E-7M2	12S/6E-19E2	12S/6E-31B1	13S/5E=1185	13S/5E-11G1
	Owner and	esn		R. Lico irriention	9 4 4 5 9 0 4 4 4 4 4 4					J. Gonzalea domestic							P. Rovella domestic & irrigation	S. Brandon domestic & etock	E. F. Broadfoot & Son domestic	C. T. Pillebury domcetic & irrigation	V. Lompae irrigation	V. Lompae

	Þ																			
	Analyzed by		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR
ness	as CaCO 3 Total N.C ppm ppm			178	161					247										
				350	330					247										
-	cent sod	 		51	52					59										
Totol	solved solved in ppm			926	937					907										
	Silico (SiO2) Other constituents																			
	Silica (SiO ₂	 																		
llion	Boron (B)			0.2	0.2					0.1										
ports per million volents per mill	Fiuo- ride (F)	 																		
arts pe	Ni- trate (NO ₃)	 		4.0	3.4					244										
parts per million equivalents per million	Chlo- ride (CI)		36 1.02	371	<u>350</u> 9.87	214 6.04	<u>207</u> 5.84	<u>190</u> 5.36	$\frac{160}{4 * 51}$	<u>280</u> 7.90	173	<u>184</u> 5.19	<u>69</u> 1.95	$\frac{64}{1*80}$	$\frac{118}{3*33}$	<u>336</u> 9.48	247	<u>270</u> 7.62	$\frac{72}{2.03}$	74
Ē	Sul - fote (SO ₄)			40 0.83	$\frac{37}{0.77}$					71										
Mineral constituents in	Potos-Carbon-Bicar- sium ate bonote (K) (CO ₃)	(00. %		<u>195</u> 3.20	$\frac{170}{2.79}$					0,00										
erol co	arbon- ate (CO 3)	Э Х		70.23	18 0.60					0.00										
M	otos- sium (K)	S VALL		<u>8.6</u> 0.22	9.5					3.0										
	Sodium (No)	SALINAS VALLEY (3-4.00)	<u>28</u> 1.22	$\frac{172}{7*48}$	<u>172</u> 7.48					169		$\frac{114}{4.96}$					_			
	sium - Magne - (Mg)			42 3.50	35 2.90					26 2.15										
	Calcium Magne~ (Ca) sium			70 3.49	<u>74</u> <u>3.69</u>					<u>56</u> 2.79										
	H			8.4	8.7					5.1										
Specific conduct-	ance (micro- mhos at 25° C)		238	1580	1510	1110	1070	1040	932	1540	890	962	635	586	775	1480	1220	1190	623	534
	Temp In °F			99	66			72		68	71		70		71		72		74	
	Dote sampled		9-1-65	7-21-64	7=20=65	7-21-64	7-21-65	7-21-64	7-21-65	8-13-64	7-21-64	7=21-65	7-22-64	7-21-65	7-22-64	8-11-65	7=22=64	7-21-65	7=21=64	7-21-65
State well	number and other number		13S/2E-13NL	13S/2E~17H1		13S/2E=19R1		13S/2E~20R2		13S/2E-29C4	13S/2E-31D2		13S/2E=31K2		13S/2E-31M2		L3S/2E=31N2		13S/2E-32A2	
	Owner and use		R. M. Cheek domestic & irrigation	Delfino & Calcagno domeetic & irrigation		T. Leonardini domostic & irrigation		Californis Artichoke & Vegetable Growers	domestic & irrigation	Permanente industrial	J. J. King irrigation		Molera Estute domostic		E. Bellone irrigation		E. Bellone irrigation		irrigation	1

	1 as coc03 Anolyzed by Total NC by		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DHR	DWR	DWR	DAR	DWR	DWR	DWR	DAR
50 10	P C CO3						135	29		30		103							
Hardn	Total ppm						338	661	75	90		133	-	-					
Der	sod						28	36	51	56			_			_			
Totol	solved solved solids in ppm						598	364	222	310		376							
	Silico (SiO ₂) Other constituents																		
	Silico (SiO ₂)																		
lion	Baron (B)						0.1	0.2	0.1	0.0		0.0				0.0	0.1		
millio er mi	Fluo- ride (F)																		
ports per million volents per mill	NI- Trote (NO ₃)						18 0.29	3.0	12 0.19	$\frac{13}{0.21}$		<u>56</u> 0.90							
ports per million equivolents per million	Chio- ride (CI)		<u>56</u> 1.58	55	62 1.75	<u>66</u> 1.86	103 2.90	<u>62</u> 1.75	48	$\frac{101}{2.85}$	<u>144</u> 4.06	<u>108</u> 3.05	56 1.58	<u>58</u> 1.64	$\frac{52}{1.47}$	47 1.32	46	<u>318</u> 8.97	712 20.08
Ē	Sul - fote (SO ₄)	ont.)					100	46 0.96	<u>1.8</u> 0.04	<u>1.5</u> 0.03		4.1 0.08							
Mineral constituents		(3-4.00) (Cont.)					3.77	3.08	<u>90</u> 1.48	63		37 0.61					-		
al con	Patos - Corbon - Bicor- sium ote bonote (K) (CO ₃) (HCO ₃)	(3-4					90.30	10	0.00	00.00	-	0.00							
Miner	K) (C	VALLEY					<u>3.3</u>	3.6	0.03	0.04		2.1							
	Sodium Pc (No)	SALINAS VALLEY	_			3.35	<u>60</u> 2.61	2.26	36	2.39		<u>51</u> 2.22							
							<u>31</u> 2.56	<u>1.29</u>	6.7	<u>9.1</u> 0.75		<u>1.01</u>							
	Coicium Magne- (Co) (Mg)						84	2.69	19 0.95	21 1.05		33	_						
-	PH Cot						8.5	8.7	8,1	8.2		7.8							
Specific			558	527	612	548	923 8	613 8	345 8	491 8	1350	593 7	571	561	547	492	459	1470	2660
1S 1S	Temp in °F (i		67		69		67	66	67	69		65	73			72		89	
	Sampled		7-21-64	7-21-65	7-23-64	8-11-65	7-23-64	7=22-65	9=1-65	9=1-65	9-3-65	9-2-65	8-13-64	7-22-65	7-22-65	8-13-64	8=18-65	8-7-64	8-18-65
Stofe well	number and other number		13S/2E-32C1		13S/2E-32N1		13S/2E-33R1		13S/3E-4L1	13S/3E-29A1	14S/1E-24Q2	14S/1E-25K1	14S/2E-6Q1		14S/2E-6R2	14S/2E-8M2		14S/2E-9K1	
	Owner and use		0. P. Overhouse	5 9 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Molera Estate irrigation		C. Rissotti irrisation	2	R. Hollenbeck domestic & irrigation	C. Lightfoot domestic & irrigation	Mrs. Fogg domestic	Marina Del Mar School domestic & irrigation	L. Martín frrieafion	0	E. Struve domestic & irrigation	J. Jeffereon	- 0.0 4 4 4 4 4	D. V. Orcutt	

_	WATER
1	0
ш	GROUND
	02
ш	G
	ш
œ	ОF
4	S
F.	ANALYSES
	\geq
	Z

	7 1																			
	Analyzed by		DWR	DAR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
2855	DD N.C.											294	140	145						
Hardnass	as Co Tatal Ppm				_							496	275	288		_				
d	and											31	37	36						
Tatal	salved salved in ppm											930	573	695						
	Silica Other canstituents (SiO ₂)																			
	Silica (SiO ₂														6					
n Ilian	Baran (B)									0.0	0.2	0,2	0.2	0.2	0.2					0.3
r millic	Flua- ride (F)																			
parts per million equivalents per million	Ni- trate (NO ₃)											6.6 0.11	$\frac{6.7}{0.11}$	7.9						
equiv	Chlo- ride (CI)		54	57 1.61	40	$\frac{40}{1.13}$	59 1,66	26 0.73	42	$\frac{37}{1.04}$	$\frac{50}{1.41}$	$\frac{224}{6,32}$	$\frac{105}{2.96}$	108 3.05	184	79	16		<u>325</u> 9.17	338 9.53
e in	Sul - fate (SO ₄)	ont.)										<u>200</u> 4.16	$\frac{143}{2.98}$	138 2.87					225	<u>229</u> 4.77
Mineral constituents	Sicar- anate HCO ₃)	(3-4.00) (Cont.)										<u>247</u> 4.05	$\frac{165}{2*70}$	$\frac{174}{2,85}$						
al can	ban-E	(3-4.										0*00	0.00	0.00						
Miner	Patas-Carban-Bicar- sium (K) (CO ₃) (HCO ₃)	ALLEY										4.6 0.12	5.0 0.13	5.1 0.13				-		
	Sodium Pc (Na)	SALINAS VALLEY										104 4.52	3.35	75 3.26						
												46 3.82	30 2,50							
	Calcium Magne- sium (Ca) (Mg)											6.09	60 2.99							
												8.3 6.	8.3	8,2						
U.C.	H C																-	-		
Specific	F (micra- mhos at 25° C)		592	593	533	523	618	388	640	614	675	1450	006	618	5 1110	5 558	1 467	467	2 1710	7 1980
	Temp in °F		99		67		70		63			64	70	70	65	65	11		i 62	67
	Date sampled		7-31-64	8-9-65	8-5-64	8-9-65	7-29-64	7-28-65	7-29-64	7-27-65	7-27-65	7-24-64	8-7-64	7-28-65	7-31-64	9-2-65	7-29-64	7-28-65	7-31-64	8-9-65
State well	number and other number		14S/2E-11D1		14S/2E-12Q1		14S/2E-14N1		14S/2E-15L1		14S/2E-16Al	14S/2E-18D1	14S/2E-23J1		14S/2E-2581	14S/2E=30P2	14S/2E-35Q1		14S/3E-30E1	
	Owner and use		J. P. Rodgere	trigetion	E. C. Eeton	domeacic & iffigation	L. A. Wilder	domeetic	Monterey County Senk	irrigetion	J. W. Orcutt 1rtlgation	J. G. Armatrong Co. irrigation	A. H. Bordgee	L. F. F. ÅØ@ L. A. O. I.	M. T. De Serpe irrigetion	A. Goodell domestic	D. P. McFadden	Irrigation	A. Lenini	1000

TABLE E-I ANALYSES OF GROUND WATER

	Anolyzed by		DWR	DWR	DWR	DWR	DuR	DWR	DWR	DHR	DHR	DWR	DHR	DWR	DWR	DWR	DWR	DWR	DWR
			70	85	50		38							225	15		20	406	369
Hardness	Total Ppm p		204	262	225		87							515 2	528				630
Per-	sod-		32 2	34 2	45 2		59	-	-		-		-	18	28				90 90
Tatal	spilos spilos mdd ui		389	513	5 09		314							752	771		534	1160	1150
	Silica (SiO ₂) Other constituents																		
	Silica (SiO ₂)																_		
Lian	Boron (B)		0.0	0.1	0.0		0*0						0.7	0.1	0.1		0"0	0.4	0.3
per mi	Fluo- ride (F)								_										
equivalents per millian	Ni- trate (NO ₃)		17 0.27	$\frac{7_{*}3}{0_{*}12}$	$\frac{4_{*}2}{0_{*}07}$		$\frac{28}{0*45}$							1.2 0.02	7.4		2.8 0.04	$\frac{61}{0*98}$	50 0,81
binbe	Chia- rida (CI)		$\frac{91}{2.57}$	94 2.65	$\frac{122}{3.44}$	$\frac{131}{3.70}$	90 2 • 54	$\frac{13}{0_*37}$		$\frac{75}{2.12}$	$\frac{37}{1*04}$		$\frac{251}{7,08}$	$\frac{65}{1,83}$	$\frac{115}{3*24}$		126 3.55	$\frac{1.32}{3.72}$	3.50
Ē	Sul - fate (SO4)	ont.)	19 0.40	$\frac{85}{1.77}$	$\frac{63}{1*31}$		15 0.31			<u>240</u> 5.00			703	<u>220</u> 4.58	46 0.96		45 0.94	444 9.24	404 8.41
Mineral canstituents in	Carban Bicar- ate banate (CO ₃) (HCO ₃)	(3-4.00) (Cont.)	<u>164</u> 2.69	<u>172</u> 2.82	<u>198</u> <u>3.24</u>		60 .98							<u>354</u> 5.80	626 10,26		245 4.02	278 4.56	318 5.21
ral ca	arban- ate CO 3)		0,00	18 0.60	8 0.27		0*00							0.00	0.00		8 0.27	0.00	0*00
Mine	Potas - Carban-Bicar- sium ate banate (K) (CO 3) (HCO 3)	SALINA\$ VALLEY	2.6 0.07	$\frac{3_{*}3}{0_{*}08}$	4.4 0.11		2.1 0.05							$\frac{3*8}{0*10}$	$\frac{14}{0_*36}$		3.6 0.09	4.6 0.12	4.4 0.11
	Sadium (Na)	SALINAS	46	63 2.74	88 3,83		59 2,57							$\frac{51}{2 \cdot 22}$	96 4.18		71 3.09	<u>137</u> 5.96	<u>125</u> 5.44
	Magne - s:um (9)		6°0	22 1,84	20 1.66		9.6 0.79							44 3.65	48 3.91		19 1.53	72	74 6.10
	Calcium A (Ca)		72	68 3.39	57 2.84		19 0,95							$\frac{133}{6_*64}$	<u>133</u> 6.64		83 4.14	135	<u>130</u> 6.49
	F		8.3	8.8	8.6		8.0							8.2	8.2		8.5	8.2	8° 1
Specific conduct-	ance (micra- mhos at 25° C)		621	786	881	736	537	453	434	1070	648	612	2360	1120	1320	622	920	1720	1690
	Temp in °F		68	72	65	99	64	65		65	70		63		64		99	09	62
	Date sampled		8-26-64	8-24-65	9-3-65	9-3-65	9-3-65	7-30-64	7-30-65	8-14-64	8-6-64	8-4-65	8-4-65	8-12-64	8-11-64	9-8-65	9-13-65	8-13-64	8-9-65
State well	number and Other number		14S/3E=33G1		15S/1E-22C1	15S/1E=23G1	15S/1E=26N2	15S/2E-1A3		15S/2E-2Q1	15S/3E-4K3		15S/3E=5Q4	15S/3E-16M1	15S/3E-17P1	16S/2E=1L1	16S/2E=3J1	16S/4E-24A1	
	Owner and use		Pacific Gae & Electric	wunicipa!	P. Calabrese domestic	0. Veach domeetic	J. Siino domestic	A. M. Dolan domestic & irrisation	0	L. Jacks irrigation	D. McFadden irrigation		H. Teraji irrigation	Spreckels Sugar Co. irrigation	J. Violini irrigatian	J. Hugo domeatic	Corral de Tierra Country Club domestic & irrigation	K. R. Nutting	11118811101

	Analyzed by				DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	r	N.C				85	28	92	212	198	-					1050	179	243		
Hardn	O L	Total				274	191	248	401	397						1360	324	552		
l	cent sod-	Ē				81.	36	31	35	35						20	25	38		
Tatal	solved	mdd ui				393	370	440	782	162						2290	582	1100		
	cd Other	(SiO ₂) Other constituents					Al 0.01 As 0.00 Cv 0.00 Pb 0.00 Mn 0.000 Zn 0.00 Fc 0.08 (Total)													
	Baran Sili	B) (Si			0.3	0*0	0.1	0.1	0.4	0.3	0.7	0.7	0.3	0.3		0.4	0.1	0.5	1.8	1.8
million		(F) (I		-						-										
parts per millian equivalents per million	Ni- F	(NO ₃)				$\frac{1.9}{0.03}$	0.4 0.01	4.1 0.07	7.6 0.12	<u>6.9</u> 0.11	0.01 0.01					33 0.53	14 0.22	43 0.69		
pari		(icide			<u>56</u> 1.58	27 1 0.76 0	44 1.24 0	62 1.75 0	86 2.43 D	84 6 2.37 0	76 0 2.14 0	76 2.14	38		73 2,06	<u>319</u> 0.00	3.47	91 2.57	<u>323</u> 9.11	3.08 8.69
Ē		(SO4) ((;	-		72 1,50	105 2.19	294 6.12 2	281 5.85 2	269 5.60 2	253 5.27 2					98 1. 2.04 3	398 8,29 2		
		- 1	1 4mm 1 100 7 67	1 LUDIE	226	230 111 3.77 2.31	3.26 1.	2.85 2.	230 29 3.77 6.	3.84 28	5°6	<u>25</u>			295	378 839 6.20 17.47	2.90 2.	$\frac{377}{6.18}$ $\frac{39}{8.}$	25.19	21.24
Mineral canstituents	n-Bic	(HCO s)		00.14.00																
Aineral	- Carbo	(K) (CO ₃)		AALLAI		0.00	8 0.00	9 0.27	0.00	9 0.13						<u>5</u> 0.00	0*00	0.00		
	Pota	(K) (K)	140 64	TVA CV		2.5	3.3	$\frac{3.4}{0.09}$	3.5	3.4						0.15 0.15	0.06	0.08		
	Sadium	(Na)	UL IVO	CUNTTINE		28	2.18	<u>52</u> 2.26	100/4+.35	4.35						154	<u>50</u> 2.18	154		
	Magne	(BM)				22	1.18	$\frac{24}{1.97}$	4.8	<u>50</u> 4.09						129	$\frac{40}{3.28}$	80		
	Calcium	(Ca)				$\frac{74}{3.69}$	53 2 • 64	60 2.99	<u>81</u> 404	3.84						332	$\frac{64}{3.19}$	89		
	H					8.2	7.8	8.5	8.0	8.3						7.9	8.3	8.3		
Specific conduct-	ance (micra -	mhos at 25° C			1100	652	614	726	1180	1200	1130	1080	760	760	1200	2990	910	1640	3570	3140
	Temp in °F					60			99	62	62	63	61		61	61	62		64	64
	0ate sampted				8=6=65	8-4-65	10=8-64	8=4=65	7-28-64	8-31-65	7~28-64	8-31-65	7=27=64	7=30=65	7-30-65	9-3-64	7=27=65	7=28=65	7-27-65	7-27-65
State well	number and other number				16S/4E~25R1	17S/5E-9Q1	175/58-1401	17S/6E=7Q1	17S/6E~27H1		L7S/6E=35F1		18S/&E-1E1		185/6E=2N1	18S/7E-29G1	19S/7E-10P1	19 <i>S/7</i> E-13D2	195/8E=32A1	198/8E-33R1
	Owner and	0.8.0			J. C. Twisselman irrigation	G. Doud irrigation	Piold Entatos Errigation	W. Hanson irrigation	N. Baker irrigation		M. Baker frigation		L, M. Jacke Irrightion		L, Jacks irrigation	<pre>& Rincini trrigation</pre>	Smiines Land Co. irrigation	0, M. Bingaman domentic & irr.	Gordon Williammon Lrrigation	G. Rowe Irrigation

TABLE E-I

	Angiyzed	5		DuR	DHR	DHR	DHR	DHR	DWR	DWR	DWR	DWR	DHR	DWR	DWR	DWR	DHR	DWR	DHR
19.6	T	N.C		276	286	516	26	80											
Hordness	as CoC	Tota I ppm		4,88	548	693	199	309		295	464	252	272	520	114	466	352	536	228
Der -	sod-	E .		43	41	32	25	31				_	_						
Totol	solved	ealids in ppm		1160	1210	1400	321	578		1086	1158	332	788	1039	530	818	643	966	387
		(SiO ₂) Other constituents		Al 0.46 As 0.00 Cu 0.02 Pb 0.00 Mn 0.00 Zn 0.10 Phenol 0.000 Fc 0.00 (Total)															
	Silco	(SiO ₂																-	
lion	Dorod	(B)		1.0	0.9	0.6	0.1	۵. ^ر		1.18	0.75	0.12	0.67	1.45	0.98	0.53	0,41	0.48	0.40
er mi	Fluo-	(F)								0.2	0.2	0.2	* *0	* *0	0.2	0.2	0.2	0.2	0,2
valents per million	ĩ	trate (NO ₃)		16 0.26	19	25	$\frac{2.1}{0.03}$	5.7		4 0.06	0.00	<u>5</u> 0.08	3 0.05	5 0.08	3 0.05	0*00	$\frac{11}{0.18}$	<u> 39</u> 0.63	$\frac{6}{0.10}$
equivalents per million	- ONO	CI)		<u>178</u> 5.02	<u>165</u> 4.65	118 3.33	20 0.56	$\frac{76}{2.14}$		$\frac{174}{4+91}$	<u>105</u> 2.96	$\frac{35}{0+99}$	$\frac{113}{3.19}$	<u>135</u> 3.81	60 1,69	<u>85</u> 2.40	98 2.76	<u>182</u> 5.13	<u>59</u> 1.66
Ē		fate (SO ₄)	(Cont.)	400	414 8.62	653 13,60	63	<u>110</u> 2.29		377	530 11,03	4 <u>8</u> 1.00	<u>187</u> <u>3.89</u>	<u>301</u> 6.27	<u>97</u> 2.02	$\frac{166}{3.46}$	$\frac{154}{3.21}$	<u>265</u>	$\frac{62}{1,29}$
Minerol constituents	Alcor-	bonate (HCO ₃)	c) (00.	258 4.23	<u>319</u> 5.23	3.54	<u>194</u> 3.18	270		317	297	268	<u>411</u> 6.74	476	340	<u>581</u> 9.52	<u>330</u> 5.41	344	<u>258</u> 4.23
rol cor	orbon-	010 010 CO 3) ((3-4	0*00	0.00	0.00	8 0.27	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0*00
Mine	Cotone C	(K) (CO ₃)	VALLEY	4.4 0.11	<u>5.2</u> 0.13	<u>6.4</u> 0.16	<u>1.6</u> 0.04	4.2 0.11		4 0.10	5 0.13	2 0.05	3 0.08	3 0.08	2 0.05	4 0.10	4 0.10	4 0.10	2 0.05
		Sodium (Na)	SALINA\$	7.48	17.74	<u>154</u> 6.70	<u>31</u> 1.35	65 2.83		$\frac{275}{11.96}$	$\frac{222}{9.65}$	<u>30</u> 1.30	<u>195</u> 8.48	<u>172</u> 7.48	<u>165</u> 7.17	142	105	132	62 2.70
		autom suum suum		<u>55</u> 4.56	93 7.66	<u>113</u> 9.26	2.38	<u>30</u> 2.43		36 2.96	<u>57</u> 4,69	<u>32</u> 2.63	<u>38</u> 3,13	95 7.81	<u>16</u> 1.32	80 6.58	<u>51</u> 4.19	63 5 • 18	$\frac{34}{2,80}$
		(Co)		5.19	66 3.29	<u>92</u> 4.59	<u>32</u> 1.60	<u>75</u> 3.74		<u>59</u> 2.94	92 4.59	48 2.40	46 2.30	<u>52</u> 2.59	<u>19</u> 0.95	<u>55</u> 2.74	57 2.84	<u>111</u> 5.54	$\frac{35}{1,75}$
	H			8.3	8.2	8,2	8.5	7.9		8.0	7.7	6.1	8.0	8.2	8.2	8.0	8.0	8.0	8,0
Specific	ance	(micro- mhos at 25° C)		1700	1810	1940	525	952	300	1650	1700	560	1250	1575	880	1300	1040	1550	665
	dme	<u> </u>		65	65	65	62	67	68	73	65	65	66		75	62	65	64	
	Oate	sampied		9-14-64	7-27-65	7-22-65	7=20-65	7-20-65	9=1-65	5=4=65	5-3-65	5-3-65	5-3-65	10-1-64	5-4-65	5-4-65	5-4-65	5-4-65	5=3-65
Stote well	number and	ather number		20S/8E-5R1		21S/9E-24L1	22S/10E-17N1	228/10E-34G1	23S/8E-8Kl	24S/11E=25N1	24S/11E-2601	24S/11E=33R1	24S/11E=35A1	24S/15E=17F1	25S/11E-1A1	25S/12E=5R1	25S/12E-8G1	25S/12E=8R1	25S/12E-16D1
	Owner and			A. Durate irrigation		K. Eade irrigation	Glav Estate irrigation	L. Rosenberg irrigation	J. Martinue Irrigation										

1 9
шŊ
шё
л Р
T A ANALYSES
Ā

	7	1																		
	Analyzed by			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
ines.	as CaCO ₃ Tatel N.C. Ppm ppm															-				
				229	290	617	181	197	132	167	442	809	499	843	472	826	204	171	203	188
	Cent sod																			
Toto	solved solved for ppm			330	440	1848	280	283	375	373	846	1456	835	1509	1294	1735	328	367	555	302
	Silica (SiO2) Other constituents																		~	
	Silice (SiO ₂)	_															40			
lian	Baron (B)			0.35	0.30	1.18	0.29	0.23	0.74	0.43	0.59	0.60	0.30	0.58	1.09	1.24	0,12	0.58	0.53	0,16
ports per million valents per mill	Fluo- ride (F)			0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.2	0*0	0.2	0.1	0.2	0.2	0.6	0.4	0.1	0.2
orts pe bients	NI- trate (NO ₃)			18 0.29	$\frac{21}{0_*34}$	$\frac{2}{0.03}$	6 0.10	0.00	5 0.08	2 0.03	$\tfrac{16}{0*26}$	6 0,10	0.0	0.00	$\frac{12}{0,19}$	26 0.42	$\frac{27}{0,44}$	3 0 <u>,05</u>	0.00	7 0.11
ports per million equivolents per million	Chio- Chio- (CI)			50 1.41	$\frac{74}{2*09}$	$\frac{234}{6*60}$	34 0,96	$\frac{41}{1.16}$	$\frac{32}{0*90}$	$\frac{36}{1*02}$	$\frac{144}{4*06}$	206 5.81	$\frac{103}{2.90}$	$\frac{277}{7*81}$	<u>196</u> 5.53	401	$\frac{38}{1.07}$	<u>25</u> 0.71	108 3.05	58 1,64
e,	Sul - fate (SO ₄)		(Cont.)	14 0.29	45 0 <u>94</u>	692 14.41	26 0.54	<u>19</u> 0.40	54 1,12	53 1,10	<u>221</u> 4.60	479	264	415 8,64	345 7,18	548 11.41	$\frac{7}{0.15}$	45	$\frac{134}{2.79}$	15 0.31
Mineral canstituents	Bicar- bonote (HCO 3)	1 :	(3-4.00) (269 4.41	299 4.90	$\frac{622}{10,19}$	234 3.84	$\frac{244}{4,00}$	<u>278</u> 4.56	<u>292</u> 4,79	<u>378</u> 6.20	481	<u>386</u> 6,33	<u>655</u> 10,74	575 9.42	<u>386</u> 6,33	235 3.85	313 5.13	<u>183</u> 3.00	3.77
eral co	Carbon- ate (CO 3)			0.00	00*00	0,00	0.00	0*00	5 0.17	0,00	0,00	0.00	0.00	0.00			00.00	0 <u>000</u>	24 0.80	0*00
'n	Potas - Carbon- sium ate (K) (C0 3)	1	VALLEY	2 0.05	30.08	$\frac{4}{0*10}$	2 0.05	2 0,05	2 0.05	2 0,05	5 0,13	3 0,08	2 0,05	$\frac{2}{0,05}$	6 0.15	3 0,08	$\frac{2}{0.05}$	3 0,08	3 0,08	9 0.23
	Sadium (Na)		SALINAS	44 1.91	62 2.70	297 12,91	40 1.74	$\frac{39}{1,70}$	99 4,30	86 <u>3,74</u>	<u>145</u> 6,30	<u>168</u> 7.30	<u>113</u> 4.91	$\frac{227}{9,87}$	<u>300</u> 13.04	<u>300</u> 13,04	$\frac{34}{1.48}$	82 <u>3,57</u>	132 5.74	<u>39</u> 1.70
	Mogne- sium (Mg)			35 2.88	45	85 6 . 99	$\frac{24}{1.97}$	$\frac{26}{2 \cdot 14}$	20 1.64	26 2,14	76 6.25	0.00	<u>57</u> 4.69	<u>112</u> 9.21	<u>59</u> 4.85	100 8.22	$\frac{27}{2 \cdot 22}$	22 1.81	28 2.30	22 1.81
	Calcium (Ca)			34 1.70	42 2,10	227 11.33	<u>33</u> 1,65	$\frac{36}{1,80}$	$\frac{20}{1.00}$	$\frac{24}{1,20}$	52 2,59	<u>324</u> 16,17	<u>106</u> 5,29	$\frac{153}{7,63}$	92 4.59	166 8.28	<u>37</u> 1.85	32 1.60	35 1.75	39 1.95
	Æ			8.1	8.2	7.5	8.0	8.1	8.3	8.2	7.9	7.9	8.2	7.6	8.2	8,2	8.2	8.2	8.7	8.2
Specific	once (micra- mhos of 25° C)			610	750	2500	480	520	600	630	1320	2012	1280	2175	1840	2880	535	660	880	530
	Temp In °F			68	70	64		70	70	78	72		60	60						
	Dote sampled			5-4-65	5-4-65	5-4-65	10-21-64	5-5-65	10-20-64	5-4-65	5-4-65	10-1-64	5-4-65	5-5-65	10-21-64	10-20-64	10-1-64	10-8-64	4-26-65	4-26-65
Stote well	number and other number			25S/12E-16K2	25S/12E-16K3	25S/12E-16L2	25S/12E-26L1		25S/12E-26N1	25s/12E-27D1	25S/12E-28B1	25S/12E-28N1	25S/12E-28N4	25S/12E-33Q2	25S/12E-35C1	25S/12E-35E1	25S/13E-19Rl	25S/14E-33Q1	26S/12E-3H2	26S/12E-3K3
	Owner and use																			

-238-

	Anolyzed by		OWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DMR	DMR
Hardness	DD NC																		
			425	349	280	351	472	438	365	2 00	175	194	442	302	413	77	145	119	127
rol Per	solved sod- solved sod- in ppm ium		947	483	556	703	821	702	1218	597	388	388	789	363	957	380	260	1356	218
19 			ő.	77	5	2	00	2	12		en 	сл 	-					1	
	Silica (SiO ₂) Other constituents																		
	Silica (SiO ₂)		00	2		2	2		00	\$	1	0	4	2	5 50		- 61	5	50
illion	Baron (B)		0,78	0,17	0,41	0*02	0.37	0*30	1.28	0.35	0,31	0*30	0.44	0.12	1.25	0.43	0.12	1.17	0*03
equivalents per million	Fluo- (F)		0.2	0.1	0.5	0.6	0.1	7 0.1	1.0	1.0	0.6	0.2	0.9	0.2	0.3	0.6	0.8	0.2	0.1
valents per mill	NI- trate (NO ₃)		0*00	10 0,16	10	18 0.29	14	$\frac{91}{1.47}$	0,00	0.0	$\frac{11}{0,18}$	0.00	$\frac{1}{0,02}$	0.00	18 0.29	8 0.13	8 0,13	0.02	0.16
nbe	Chio- ride (CI)	_	183	$\frac{53}{1.49}$	87 2.45	116 3.27	145	$\frac{142}{4*00}$	275 7.76	79 2.23	67 1.89	68 1.92	95 2,68	50 1.41	$\frac{109}{3.07}$	43	45	184 5.19	22 0.62
ls in	Suf - fate (SO ₄)	(¢oot.)	$\frac{274}{5,70}$	$\frac{150}{3.12}$	115	$\frac{146}{3.04}$	$\frac{130}{2.71}$	98 2.04	<u>218</u> 4.54	<u>137</u> <u>2.85</u>	18 0.37	36 0.75	<u>252</u> 5.25	<u>38</u> 0.79	280 5,83	39 0.81	29 0.60	528 10,99	<u>33</u> 0,69
Mineral constituents	Bicar- bonafe (HCO ₃)	(00	<u>328</u> 5.38	$\frac{241}{3,95}$	$\frac{303}{4 + 97}$	<u>361</u> 5.92	4.94 8.10	293 4,80	573 9,39	$\frac{330}{5.41}$	295	<u>290</u> 4.75	356 5.83	<u>297</u> 4.87	<u>378</u> 6.20	<u>284</u> 4.65	170 2.79	317	151 2.47
eral co	Patas - Carban- sium ate t (K) (CO ₃) ((3-4.	0*00	0.00	0.00	0*00	0*00	0.00	0.00	0,00	0.00	0.00	0,000	0,000	0.00	0*00	0.00	0,00	0.00
Min	Patas- sium (K)	VALLEY	19 0.49	2 0.05	$\frac{2}{0,05}$	$\frac{2}{0,05}$	$\frac{2}{0,05}$	2 0.05	4 0.10	$\frac{3}{0,08}$	2 0,05	2 0.05	3 0,08	$\frac{1}{0,03}$	4 0.10	3 0,08	3 0,08	3 0,08	3 0,08
	Sadium (Na)	SALINAS	$\frac{170}{7 \cdot 39}$	43 1.87	98 4.26	<u>125</u> 5,44	<u>135</u>	76 3.30	<u>320</u> 13.91	145	89 <u>3,87</u>	77 3,35	$\frac{113}{4,91}$	25 1.09	$\frac{165}{7*17}$	119	44 1.91	440 19,13	$\frac{29}{1,26}$
	Magne ~ sium (Mg)		48 3.95	52 4.28	28 2.30	35 2.88	<u>57</u> 4.69	41 3,37	45	$\frac{17}{1.40}$	23 1.89	24 1.97	43	28 2.30	$\frac{33}{2.71}$	6 0.49	<u>17</u> <u>1.40</u>	70.58	6 0.49
	Calcium (Ca)		91 4.54	54 2 • 69	66 3.29	83 4.14	95 4.74	108	72 3.59	52 2,59	32 1.60	38 1.90	106 5,29	75 3+74	111	21 1,05	30 1.50	36 1,80	41 2.05
	Hd		8.1	7.8	7.5	7.4	7.6	7.7	8,1	7.8	7.8	8,1	7.5	7.8	8,1	7.8	7.9	8.1	7.8
Specific canduct-	ance (micra- mhos at 25° C)		1430	800	972	1203	1280	1140	1900	980	625	660	1264	680	1497	673	435	2158	374
0, 0	Temp in °F						66	70		62				64					79
	Date sampled		4-26-65	12-18-64	4-1-65	4-1-65	5-5-65	5-5-65	5-6-65	5-5-65	10-9-64	5-6-65	5-28-65	5-6-65	10-8-64	4-20-65	10-8-64	10-9-64	10-9-64
State well	numbsr and ather number		26S/12E-3L1	26S/12E-5A2	26S/12E-9L1	26S/12E-9L2	26S/12E-9R1	26S/12E-16C4	26S/12E-21D1	26S/12E~21L1	26S/12E-22P2		26S/12E-33B2	26S/12E-33Q2	26S/13E-4J1	26S/14E-16R1	26S/14E-34D1	26S/15E=2N1	26S/15E-20N1
	Owner and use																		

	Andiyzed by			_	ef.	e	e.	es.	N.	H	H.	er	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
-					DWR	DWR	DWR	DWR	DMR	DWR	DWR	DWR	D	Dt	â	Å	Ď.	ă 	ñ	ă 	0
	σL	U.U.			~	•			2			······		1	6	80	80	e	365	573	70
		ppm ppm			1483	179	350	161	627	301	291	225	414	551	519	528	518	463	36	57	-
	dis- solved cent solued sod-	mqq			3134	1601	472	543	740	445	406	560	550	116	720	209	677	598	479	772	422
	T	\rightarrow		-	Ξ.	7				-							· · · · ·				
	Other constituer	(SiO ₂)																			
	Silica	(SiO ₂)								48					32					+	7 45
n lion	Baran	<u>A</u>			1.34	2.50	0*00	0,26	0,08	0.10	0.13	0.37	0,20	0.42	0.11	0,17	0.11	0,14	0.08	0,14	0.37
parts per millian equivalents per millian	Fluo				0.7	1.2	0.1	0.1	0.4	0.4	0,1	0.6	0.1	0.2	0.4	0.2	0.2	0.2	0.2	0.1	0.3
arts pe	- i N - 1	(NO ₃)			$\frac{14}{0.23}$	55 0.89	0*0	$\frac{2}{0,03}$	0,000	90.15	2 0.03	0.00	$\frac{2}{0*03}$	35	5 0.08	3 0.05	1 0,02	3 0.05	3 0.05	2 0.03	5 0.08
d Vince	Chio-	(CI)			663 18.70	<u>115</u> 3.24	$\frac{21}{0.59}$	23 0.65	32 0 . 90	81 2.28	95	57 1.61	75 2.12	128 3.61	<u>55</u> 1.55	$\frac{52}{1.47}$	65 1.83	<u>50</u> 1.41	46 1.30	89 2.51	21 0.59
5	Sul-	(S04)	Í	011-1	1276 26 . 57	<u>368</u> 7.66	148 3.08	$\frac{140}{2.91}$	$\frac{247}{5*14}$	15 0.31	$\frac{13}{0.27}$	$\frac{133}{2*77}$	$\frac{110}{2 \cdot 29}$	<u>237</u> 4,93	244	248 5.16	<u>235</u> 4,89	194 4.04	$\frac{157}{3*27}$	$\frac{231}{4,81}$	20 0.42
Mineral constituents	Bicar-	(HCO ₃)	100	(3-4*00) (0011-)	<u>327</u> 5,36	<u>338</u> 5.54	$\frac{303}{4+97}$	365	451 7,39	308	315	338	361	429 7.03	331 5.43	<u>367</u> 6.02	338	329	250 4.10	420 6,88	359
erai ca	arban-	(K) (CO ₃) (0*00	0*00			0*00	0.00	00.00	0,00	0,00	0.00	0*00	0,00	0.00	0.00	0.00	0,00	0*00
Min	otas-C	E (Y)		VALLAX	6 0.15	$\frac{12}{0,31}$	$\frac{1}{0.03}$	$\frac{2}{0,05}$	1 0.03	2 0,05	2 0,05	2 0.05	2 0.05	3 0,08	1 0.03	$\frac{1}{0,03}$	2 0,05	2 0,05	1 0.03	3 0.08	2 0,05
		(DN)	0 1112 210	SALLINAS	510 22.17	315 13.70	36 1+57	$\frac{142}{6,17}$	$\frac{22}{0,96}$	$\frac{42}{1,83}$	47 2.04	125 5.44	49 2.13	125 5.44	46 2.00	45 1,96	$\frac{42}{1,83}$	41 1,78	35 1.52	59 2.57	<u>130</u> 5,65
		(6W)			142 11.68	$\frac{24}{1,97}$	$\frac{36}{2*96}$	$\frac{16}{1,32}$	<u>54</u>	38 3.13	$\frac{38}{3*13}$	22 1,81	49 4.03	77 6.33	52 4.28	50 4.11	<u>64</u> 5.26	61 5.02	50 4.11	75	9 0,74
	E	(Ca)			360	$\frac{32}{1.60}$	81 4.04	$\frac{38}{1,90}$	162 8,08	58 2.89	<u>54</u> 2.69	54 2.69	85 4.24	94 4.69	122 6.09	$\frac{129}{6.44}$	<u>102</u> 5.09	85 4.24	64 <u>3,19</u>	<u>106</u>	13 0.65
	Ha				7.6	8.0	8.0	8.2	8.0	7.9	7.9	8.0	7.9	7.7	7.8	8,1	7.6	7.5	7.6	7.*7	8.2
Specific	ance (micra-	mhas at 25° C)			4205	14,90	110	810	1060	752	700	006	875	1460	1075	1035	1060	930	770	1220	650
	Temp In °F				77		65	70			70	62		61		60	61	60	60	63	
	Oate sampied				10-8-64	10-7-64	10-18-64	10-18-64	4-30-65	10-1-64	5-5-65	5-5-65	5-6-65	5-6-65	10-1-64	5-6-65	5-6-65	5-6-65	5-7-65	5-7-65	10-4-64
	other number				26S/15E-28Q2	26S/16E-31B1	27S/10E-15GS1	27S/10E-15GS2	27S/11E-16L1	27S/12E-3C2		27S/12E-4P2	27S/12E-9D2	27S/12E-21G1	27S/12E-21N1		27S/12E-29P3	27S/12E-32F2	27S/12E-32Q3	27S/12E-33N1	27S/13E-9F1
	Owner and																				

TABLE E-I ANALYSES OF GROUND WATER

_	WATER
ц ш	GROUND
TABL	ANALYSES OF

	Analyzed by		DWR	DWR	DWR	DWR	DWR	DWR	DHR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hordness	os CoCC		845	115	309	320	414	399	312	297	4.59	240	264	263	256	434	246	254	206
Per-	- mni		0		(-)		7	(-1			-					7			
Totol	solved solvad n ppm		3095	416	402	422	517	543	417	377	601	322	330	358	394	564	372	378	321
	Silico (SiO ₂) Other constituents																		
	Silico (SiO ₂)							27									_		_
llion	Boron (B)		1,34	0.58	0.05	0.14	0,12	0.08	0.09	0.12	0.11	0.08	0.04	0.08	0.07	0.04	0.03	0.05	00.00
valents per mill	Fluo- ride (F)		0.7	0.8	0.2	0.2	0.2	0.5	0.1	0.2	0.1	0.2	0.4	0.2	0.8	0.1	0.1	0,1	0.2
equivalents per million	Ni - trote (NO ₃)		47 0.76	<u>10</u> 0.16	0.0	4 0,06	$\frac{14}{0.23}$	2 0.03	3 0.05	1 0.02	15	70.11	70.11	90.15	8 0.13	10	60.10	6 0.10	55 0.89
equiving	Chlo- ride (CI)		890 25.10	<u>53</u> 1.49	37	<u>33</u> 0.93	$\frac{71}{2.00}$	<u>52</u> 1.47	40	$\frac{37}{1.04}$	$\frac{76}{2.14}$	29 0.82	28 0.79	$\frac{32}{0.90}$	$\frac{66}{1.86}$	<u>59</u> 1.66	39	$\frac{40}{1.13}$	35
c .	Sul - fote (SO ₄)	ont.)	947 19.72	<u>60</u> 1.25	103	$\frac{141}{2.94}$	89	134	<u>98</u> 2.04	74	3.21	67 1.39	<u>68</u> 1.42	86	94 1.96	$\frac{170}{3.54}$	40	41 0.85	<u>31</u> 0.65
nstituents	Bicor- bonote (HCO ₃)	(3-4.00) (Cont.)	<u>301</u> 4.93	<u>269</u> 4.41	<u>263</u> 4.31	$\frac{231}{3.79}$	<u>351</u> 5.75	<u>323</u> 5.29	<u>281</u> 4.61	283	<u>328</u> 5.38	<u>224</u> 3.67	<u>232</u> <u>3.80</u>	<u>232</u> 3.80	$\frac{219}{3.59}$	299	303	<u>306</u> 5.02	$\frac{191}{3.13}$
Mineral constituents	Potos - Carbon- sium ote (K) (CO ₃)		5 0.00	4 0.10 0.00	1 0.03 0.00	$\frac{1}{0.03}$ $\frac{0}{0.00}$	2 0.00	1 0.00 0.00	$\frac{1}{0.03}$ $\frac{0}{0.00}$	2 0.05 0.00	2 0.00	1 0.03 0.00	1 0.03 0.00	1 0.00	1 0.03 0.00	0.00 0.00	1 0.03 0.00	1 0.00	2 0.00
	Sodium Pc (No) s	SALINA\$ VALLEY	770 33.48	116 5.04	32	26	37	1.74	34	25 1.09	43	<u>30</u> 1.30	23	30	33	41 1.78	48 2.09	47 2.04	$\frac{37}{1,61}$
	Magne - Sium Sium (Mg)		81 6.66	11 0.90	<u>38</u> 3.13	<u>3.21</u>	54	4.03	34 2.80	<u>31</u> 2.55	52 4.28	28 2.30	26 2.14	30 2.47	29 2,38	<u>57</u> 4.69	<u>15</u> 1.23	<u>15</u> 1.23	24
	Colcium Mc (Co) 5		205 6	28 1.40	61 3.04 3	64 3.19 3	3.84 4	79 4	69 3.44 2	68 3.39	98 2	2.50	63 3.14	2.79	2.74	3.88	3.69	77 3.84	4 <u>3</u> 2.15
	S E		7.8	8.0	7.4	7.5	7.8	7.9	7.6	7.6	7.4	7.7	7.4	7.3	7.9	7.1	7.5	7.5	7.5
Specific conduct-	1		4595	630	660	680	860	868	690	650	1000	560	580	600	565	076	650	680	580
SU	Temp in °F 0		73		60	60	64		60	63	56	66	61	66		61	65	65	63
	Date sampled		10-7-64	10-7-64	5-6-65	5-6-65	5-6-65	10-9-64	5-5-65	5-5-65	5-5-65	5-5-65	5-5-65	5-5-65	10-7-64	5-4-65	5-4-65	5-3-65	5-3-65
State well	number and ather number		27S/15E-13A1	27S/16E-23N1	28S/12E-4G1	28S/12E=4J2	28S/12E+10H3	28S/12E-10R2		28S/12E-14J2	28S/12E-14R1	285/12E-24F2	28S/12E-25B1	285/13E-30N1	28S/16E=14Nl	29S/13E-5D5	295/13E-8M1	295/13E-8N1	295/13E=1481
	Owner and use																		

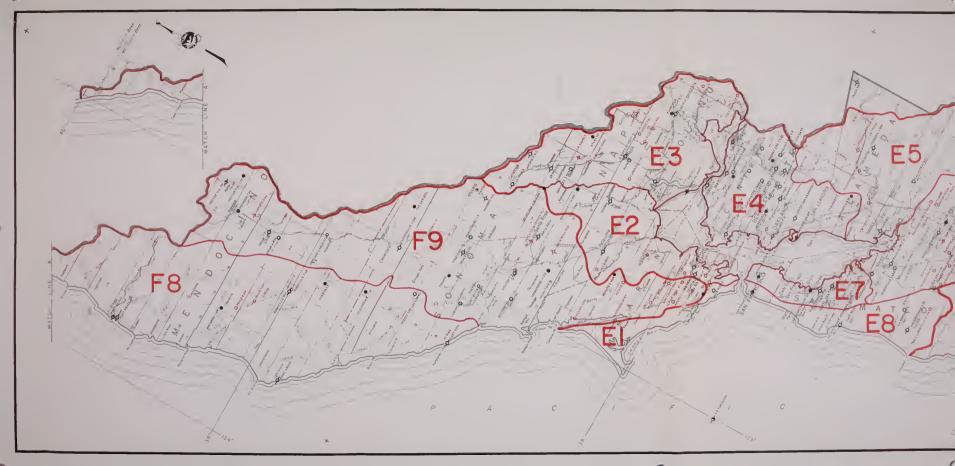
_	WATER
- 1	0
ш	GROUND
ш	G
-	95
В	
ΤA	ANALYSES
	ž
	1

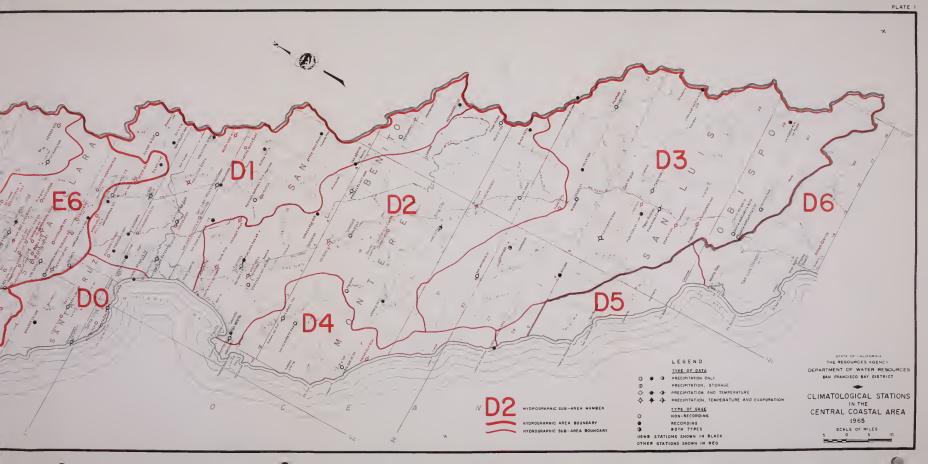
	hazed			~		~	~	~	~		~	~	~	~	~	~			~
	Anolyzed			DWR	DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
dness	as CoCO ₃ Tatol N.C. Ppm ppm	1									06	138	110	66	76	162	159	72	60
	· · ·			280	278	277	290	182	240		279	351	308	273	238	420	425	241	224
lo	solved sod- solved sod- in ppm ium			417	379	375	343	279	361		462 28	644 37	476 30	453 29	472 40	729 33	688 27	385 27	372 26
Tot		-									-		-						
	Silico (SiO ₂) Other constituents																		
	on Silic) (SiO	-		90	01	1	9	10	12		_	d				-	1		0
ports per million equivalents per million	e Boron			1 0.06	1 0.10	1 0.11	1 0.06	8 0.10	4 0.12		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
ports per million volents per mill	Ni- trote (NO ₃) (F)			0.1	0.1	0.1	0.1	0.8	12 0.4		5	15	15		2		17	1 02	7.6 0.12
ports livalent		-		0.10	5 0.16	3 0.19	4 0.55	9 0.34	2 0.45		9 0.02	8 0.03	7 0.03	9 1.8 0.03	3 0.12	2 0.6 2 0.01	2 0.01	4 <u>1.4</u> 0.02	
edr	Chio- Chio- (CI)			46	$\frac{41}{1.16}$	<u>33</u> 0.93	12 0.34	28 0.79	22 0.62		67 1.89	159	<u>84</u> 2.37	67 1.89	<u>104</u> 2.93	<u>132</u> 3.72	$\frac{114}{3.22}$	51 1.44	43
its in	Sul - fote (SO4)		ont.)	62 1.29	70 1.46	87	38 0.79	34 0.71	94 1.96		100 2.08	<u>112</u> 2.33	<u>125</u> 2.60	$\frac{114}{2.37}$	77	3.77	3.54	84	103 2.14
Minerol constituents	Potas - Carbon- Bicor- sium ote bonote (K) (CO ₄) (HCO ₄)		(3-4.00) (Cpnt.)	315	254	252 4.13	276	<u>197</u> 3.23	3.29	-7.00)	210	260	3.75	<u>171</u> 2.80	182	<u>315</u> 5.16	292	<u>195</u> 3.20	<u>163</u> 2.67
terol c	Carbon- ote (CO 3)	,		0.00	6 0.20	0.00	0.00	0.00	0.00	CARPEL VALLEY (3-7.00)	10	0.00	6	20 0.67	8 0.27	0.00	<u>16</u> 0.53	5 0+17	0.00
Ň	Potas- sium (K)		VALLEY	1 0.03	1 0.03	1 0.03	0.03	1 0.03	1 0.03	EL VALI	<u>4.3</u> 0.11	4.6 0.12	$\frac{4.4}{0.11}$	3.9	2.5	4.1 0.10	$\frac{5.2}{0.13}$	3.6	3.6
	Sodium (No)		SALINAS VALLEY	<u>56</u> 2.43	$\frac{40}{1.74}$	$\frac{33}{1.43}$	13 0+57	36	$\frac{39}{1.70}$	CARM	<u>50</u> 2.18	<u>96</u> 4.18	61 2.65	<u>53</u> 2.30	73 3.18	<u>95</u> 4.13	$\frac{74}{3.22}$	42 1.83	<u>37</u> 1.61
	Magne- sum (M9)			$\frac{33}{2.71}$	$\frac{39}{3.21}$	40 3.29	$\frac{11}{0*90}$	$\frac{18}{1.48}$	<u>28</u> 2.30		$\frac{22}{1,78}$	$\frac{26}{2.17}$	$\frac{27}{2.21}$	$\frac{24}{1.96}$	<u>18</u> 1.52	$\frac{27}{2.20}$	32	20 1.63	<u>18</u> 1.49
	Calcium (Co)			<u>58</u> 2.89	47 2.35	45 2.25	<u>98</u> 4.89	43 2.15	<u>50</u> 2.50		3.79	<u>97</u> 4.84	79	3.49	<u>65</u> 3.24	<u>124</u> 6.19	<u>117</u> 5.84	64 3.19	<u>60</u> 2.99
	H			7.5	8.4	8.2	7.6	8.0	7.8		8.6	7.6	8.5	8 °.5	6.5	8.3	8.6	8.4	8.3
Specific	mhos ar 25° C)			730	650	640	570	435	570		749	925	868	793	197	1260	1180	680	545
	Temp in °F			63			58				60	60	60	59	59	60	62	59	59
	Oafe sompied			5-4-65	5-3-65	5=3-65	5-3-65	10-4-64	10-4-64		9=3-65	9-13-65	8-28-64	8-28-64	9-8-65	8-28-64	9-3-65	8-28-64	8-28-64
Stote well	number and other number			29S/13E-18H1	29S/13E-19H1	29S/13E-19H2	29S/13E-21F1	30S/15E=10G2	30S/15E-21C1		16S/1W-13L1	16S/1W-13L2	16S/1W-13Q2	16S/1W-13R1	16S/1E-16L1	16S/1E-17G1		16S/1E-18K1	16S/1E-18P1
	Owner and use										R. Odello irrigation	Carmel S. T. Plant industrial	8. Odello irrigation	8. Odello irrigation	L. P. Horan domestic	Harbert irrisation	1		B. Odello irrigation

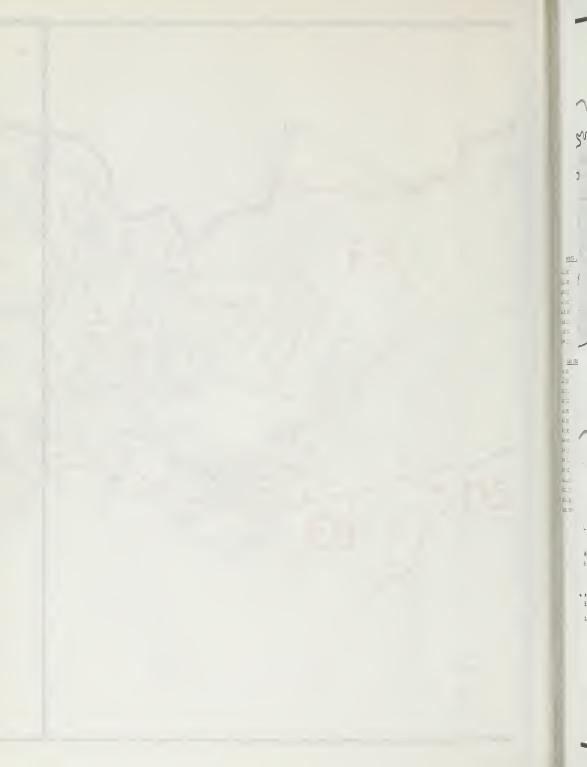
	Anolyzed by	UMB	DWR	
dress	solved cent of Cood solved sod- in ppm ium Totol N.C	07	64	
Hor	Totol	146	152	
Per		6		
Totol dis-	solve solve in ppi	252	283	
	Silico Other constituents (SiO2)			
ŀ	Silia (SiG			
ullion	Boron (B)	-	0.1	
E La	Fluo- ride (F)			
ports per million equivalents per million	Ni- Fluo- trate ride (NO ₃) (F)	v c	0.01	
adninbe	Chio- ride (CI)	76	29 0.73 0.82	
Its in	Sul - fote (SO ₄)		$\frac{90}{1.42}$ $\frac{77}{1.60}$	
Mineral constituents in	Potas-Corban-Bicor- sium ate bonote (K) (CO ₃) (HCO ₃)	-7.00)	2.05 2.18 2.18	
nerol c	Corban- ate (CO 3)	.ЕҮ (3	0.07 0.00	
×	Potas- sium (K)	SL VAL	<u>2.5</u> 0.08 <u>2.9</u> 0.07	
	Sodium (Nd)	CARM	$\frac{36}{1.39}$ $\frac{36}{1.57}$	
	Calcium Mogne- (Co) (Mg)	ŝ	1.02 1.02 0.90	
	Calcium (Co)	ac	1.90 43 2.14	
	F		9°3	
Specific conduct-	lied in °F (micro - pH Calciu mos (Co)		469	
ļ	in °F		63 60	
Onte	sompled		8-28-64 9-7-65	
Stote well	other number		16S/1E-25B1	
	Owner and use		E. A. Holt irrigation	

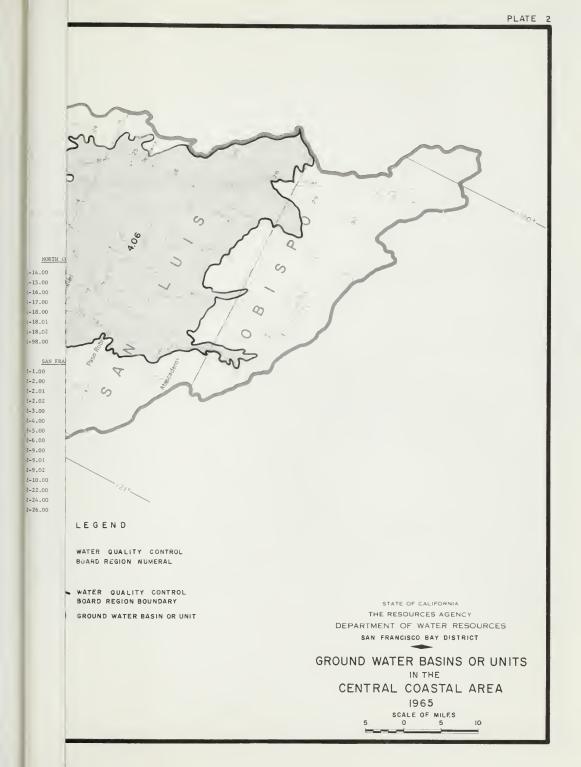
TABLE E-2

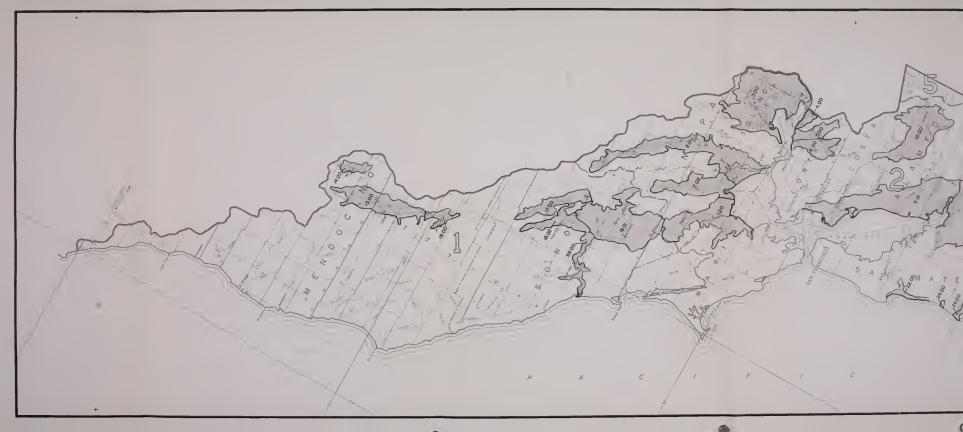
RADIOASSAYS OF GROUND WATER

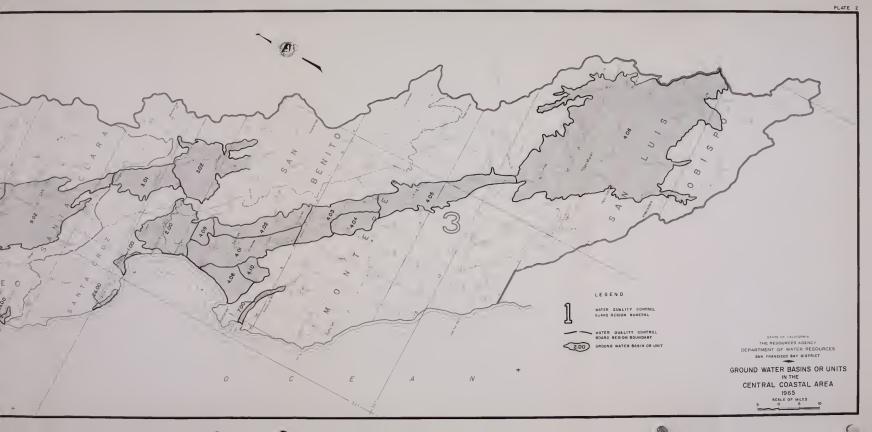

	TIVITY	lue)		+8.53		+3.86	+7.89		<u>+</u> 8.79		+8.94	<u>+</u> 8.25	
		Suspended (Residue)		-10.53	-5.33	1.34	-1.02		0.98	-3.74	9.61	1.77	
er Liter	BETA ACTIVITY	ved ate)		+12.65	+10.04	+18.33	+11.80	+11.50*	4.20		+14.34	+11.57	*96.67
Curies P		Dissolved (Filtrate)		13.25	5.26	21.00	-2.13	20.0	3.01	-0.26	11.54	7.55	-12.6
Radioassay in Pico Curies Per Liter	ALPHA ACTIVITY	uded.	EY .01)	+1.25		+4.70	<u>+</u> 1.51		<u>+0.60</u>	+0.96		<u>+</u> 0.46	
adioassa		Suspended (Residue)	ARA VALLEY ea (2-9.01)	1.26	-0.11	-0.48	2.44		-0.18	0.86	0.00	-0.08	
В	ALPHA A	lved rate)	SANTA CLARA VALLEY East Bay Area (2-9.0	<u>+</u> 0.56	<u>+</u> 2.02	+3.01	+4 , 28	+1.70*	+0.90	<u>+</u> 1.59	<u>+</u> 1.42	+5.40	<u>+</u> 1.17*
		Dissolved (Filtrate)	Eas	-1.14	0.41	0.22	3,55	0.58	2.36	0.28	-0.66	4.27	0.08
bəzvlanA VB				DPH	DPH	HAC	ŊРН	ŊРН	ЛРН	нда	DPH	ЪРН	НД
bəlqms ² v ^g				DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
		tsŪ Iqms2		9-17-64	12-3-64	3-4-65	6-8-65	9-2-65	9-17-64	12-3-64	3-4-65	6-8-65	9-2-65
-	Drate well	Number		12S/1W-21F2					12S/1W-21P6				

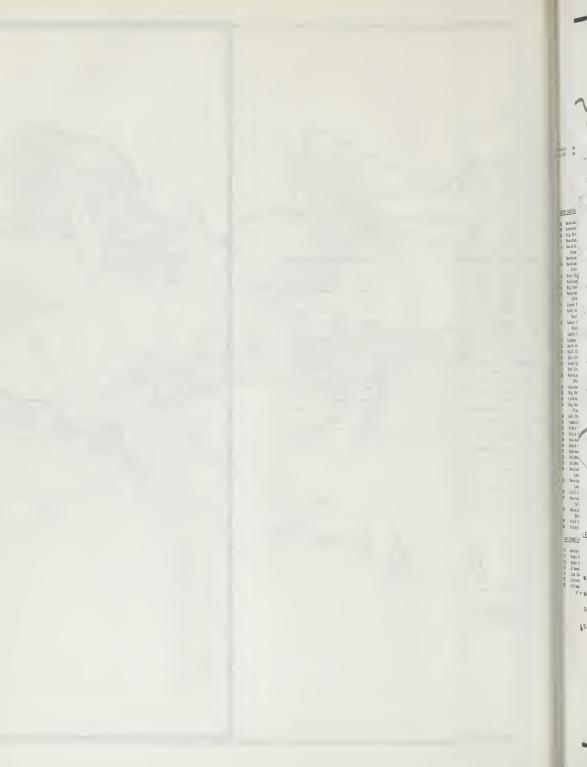

*Values are total Alpha or total Beta

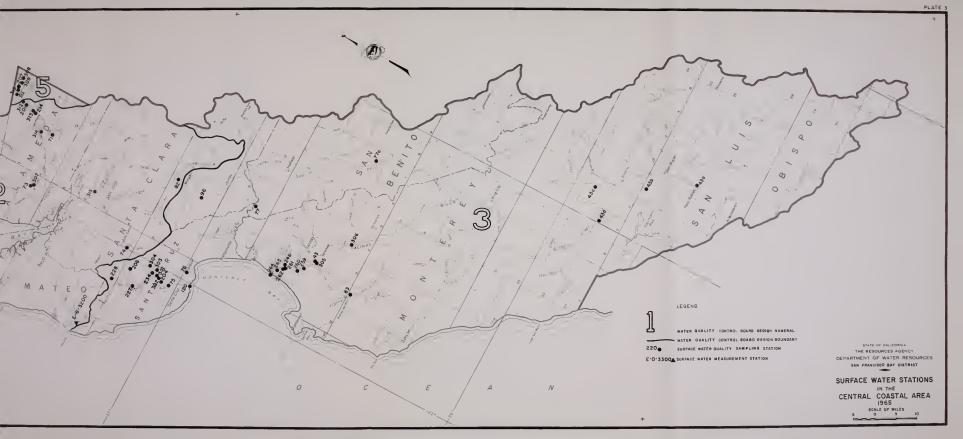

1

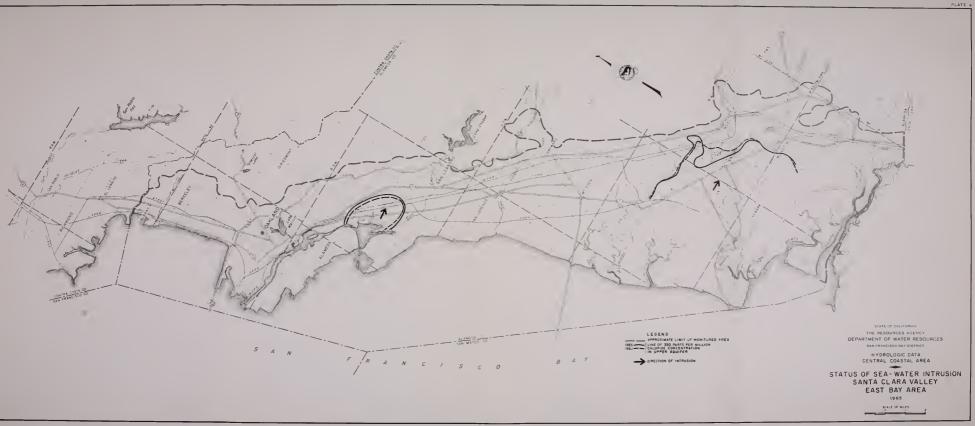

i.

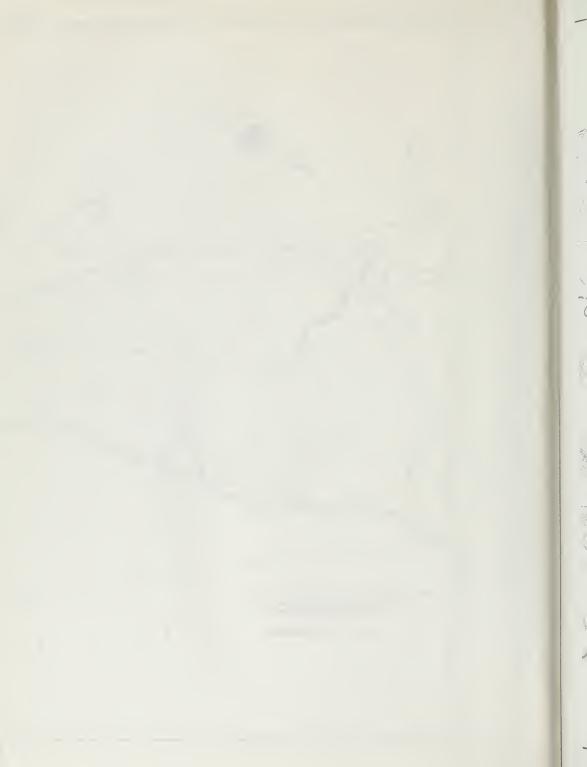


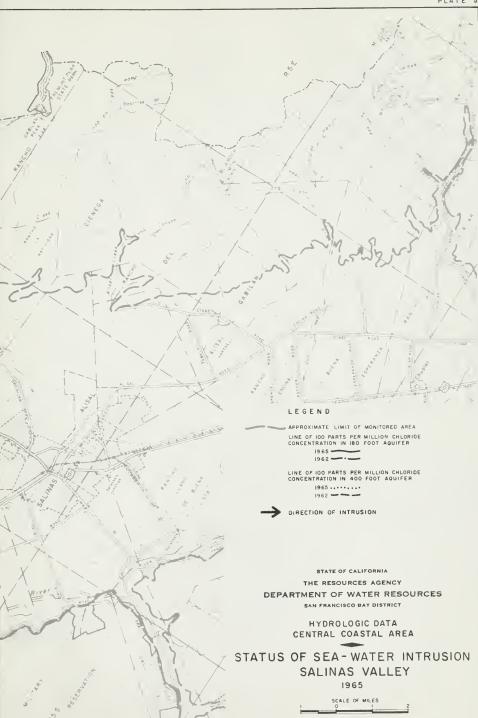


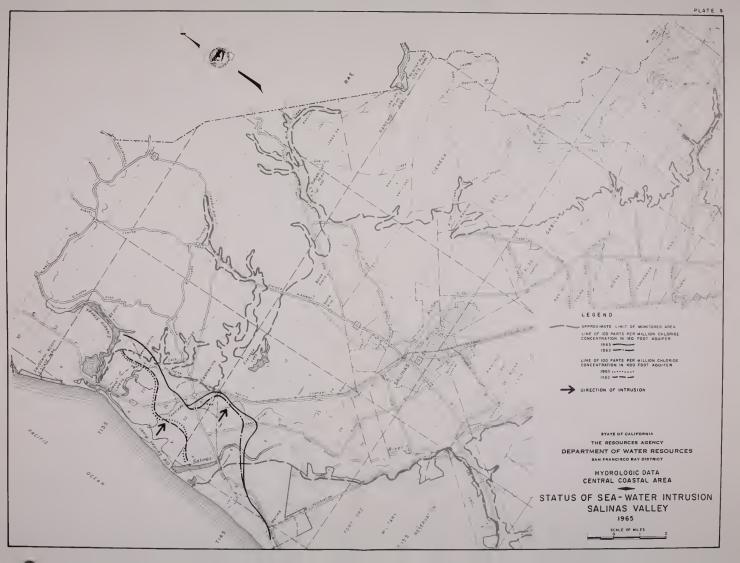


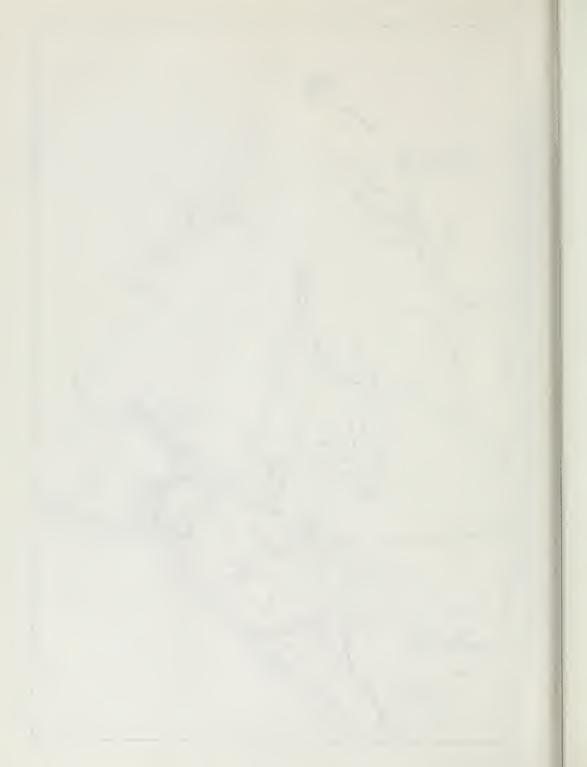


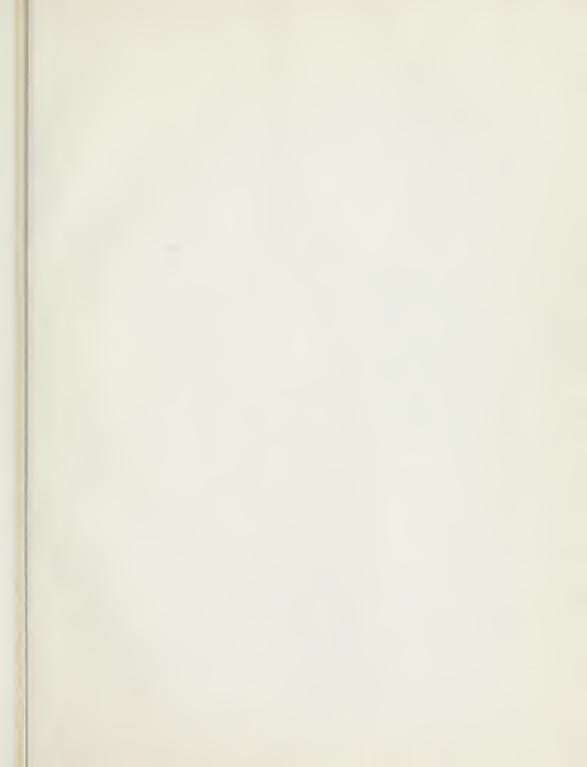

HYDROLOGIC DATA CENTRAL COASTAL AREA


STATUS OF SEA- WATER INTRUSION SANTA CLARA VALLEY EAST BAY AREA 1965


SCALE OF MILES


PLATE 4





THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

MAR 1 1 1974	
MAY 21 REC'D	
LIBRARY, UNIVERSITY O	
Rook Slip-55m-1	0 '68 (J404858) 458-A-31, 5

N? 601062

	~~ ())
California. Te ri elt	~
of "ter Pesurces.	0
- - + - ב[ינע	pr. 10-
PHYSICAL	T. 3
SCIENCES	c.?
LIBRARY	

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

	Call Number:	
601062 California. Dept. of Water Resources. Bulletin.	TC824 C2 A2 no.l30:65 v.3 c.2	

. .